
ESD-TR-71-345 ho -1$K1\

QUEUEING NETWORK MODELS OF MULTIPROGRAMMING

Jeffrey P. Buzen

August \97\

ESD ACCESSIOKL^T
TRl Call No

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 0I730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-70-C-02I7 by Harvard University,
Cambridge, Massachusetts 02I38.)

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy

ESD-TR-71-345

QUEUEING NETWORK MODELS OF MULTIPROGRAMMING

Jeffrey P. Buzen

August 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

(Prepared under Contract No. FI9628-70-C-02I7 by Harvard University,
Cambridge, Massachusetts 02138.)

FOREWORD

This report was prepared in support of Project 2801, Task
280102 by Harvard University, Cambridge, Massachusetts under
Contract F19628-70-C-0217, monitored by Dr. John B. Goodenough,
ESD/MCDT-1, and was submitted August 1971.

This technical report has been reviewed and is approved,

A *
OHN B. GOODENOUGHv

Project Officer

ii

ABSTRACT

A model is developed which represents the behavior of
multiprogrammed computer systems in terras of a network of
interdependent queues. This model, which is known as the
central server model of multiprogramming, is first analyzed
mathematically and then applied to three problems in
operating system design. These are: the optimal choice of
buffer size for tape-like devices; the optimal allocation of
processing requests among a set of functionally equivalent
peripheral processors such as disks and drums; the optimal
selection of the degree of multiprogramming In demand paging
systems.

A series of computational algorithms are developed to
supplement the analytic work. These algorithms can be used
to obtain the marginal distributions and expected queue
lengths for a large class of queueing network models.

Ill

PREFACE

I am deeply indebted to my advisor Dr. Ugo 0. Gagliardi
for introducing me to the subject of queueing theory and for
encouraging me to work in this area. In addition. Dr. Gag-
liardi' s clear vision of the underlying nature of scientific
research has provided a sharp focus of expectation throughout
the course of this thesis.

I would also like to express ray gratitude to the other
members of my committee. Professors T.E. Cheatham, Jr., A.G.
Oettinger and W.A. Woods, for the time they have invested
in reading this thesis and for their pertinent comments.
R.M. Klerr's extremely careful and thoughtful reading of an
early draft of Chapter 4 is also appreciated. Finally, I
would like to point out that a number of ideas in Chapter 7
were generously contributed by C.G. Moore and S.R. Kimbleton
of the University of Michigan and by F. Baskett of the
University of Texas. These contributions are explicitly
acknowledged in footnotes and in the body of the text.

The work leading to this thesis was supported in part
by the National Science Foundation through the Traineeship
program. Support for the thesis itself was provided by the
Veterans Administration under Chapter 3^t Title Jd of the
G.I. Bill and by the Electronic Systems Division, L.G.
Hanscom Field, Bedford, Massachusetts under Contract No.
F-19628-70-C-021?.

My wife Judy deserves special recognition for her unique
sensitivity and consistent support during the preparation of
this thesis. Her many intangible yet highly significant
contributions are sincerely appreciated.

JEFFREY BUZEN

Watertown, Massachusetts
May, 1971

lv

TABLE OF CONTENTS

FOREWORD ii

ABSTRACT ill

PREFACE lv

LIST OF FIGURES ix

LIST OF TABLES x

SYNOPSIS» xi

CHAPTER 1 INTRODUCTION

The Need for Queueing Network Models 1

Organizational Remarks k

CHAPTER 2 SURVEY OF THE APPLICATIONS OF QUEUEING THEORY

TO COMPUTERS

Essentials of Queueing Theory o 6

Quantum Controlled Service Disciplines 12

Scheduling Algorithms 14

Quantum Types • • 20

Overhead Assumptions 23

Arrival Processes 24-

Service Time Distributions 27

Summary and Evaluation 29

Conventional Priority Disciplines 37

Rotating Storage Service Disciplines bk

Capacity Problems o ^9

Network Models 5^

CHAPTER 3 SURVEY OF QUEUEING NETWORK RESEARCH

i£arly Developments 6j

Output Distributions 63

Analysis of Specific \etwork Types 64

Limitations on Network Capacity 67

General Network "'odels 70

The Work of J.R. Jackson 70

The Work of W.J. Gordon and G.F. Newell 73

CHAPTER k INTRODUCTION TO THE CENTRAL SERVER MODEL

Specification of the Model 76

Individual Program Behavior 76

System Behavior 79

Behavior Parameters 82

Summary Description of the f-'odel 86

Elementary Properties 89

Introduction 89

Distribution of Processing Requests 89

Distribution of Total Processing Time 93

CHAPTER 5 THE STEADY STATE DISTRIBUTION AND ITS PROPERTIES

Analytic Expressions 100

Derivation of the Steady State Distribution .. 100

Processor Utilization 103

Conservation Laws 104

Queue Lengths 108

System Performance 112

vl

Bottlenecks 113

Computational Formulas 116

Basic Iterative Formula 116

Extensions 123

CHAFTER 6 APPLICATIONS

Introduction 13^

Buffer Size Determination 135

Problem Definition I35

Relation Between Buffer Size

and Network Parameters 136

I on-Integral Values of N I38

Optimization Equations I39

Analysis 14-2

Peripheral Processor Utilization 152

Problem Definition 152

Optimization Equations 152

Discussion of Results • 153

Mathematical Analysis 158

Page Traffic Balancing 165

Problem Definition 165

Parametric Specification

of Page Traffic Behavior 166

Relation Between Page Traffic

Behavior and Xetwork Parameters 170

Optimization Equations 172

Analysis 17^

vil

CHAPTER 7 EXTENSIONS

Introduction 178

New Processor Types 179

Multiple Processors and Channels 179

Dedicated Peripheral Processors 180

Queue Dependent Processors 181

Non-Exponential Dedicated

Peripheral Processors 183

Hyperexponential Central Processors

with Processor Sharing 189

Variations in the Degree of Multiprogramming 193

A Specialized Time-Sharing Model 193

An Open Network Model 197

CHAPTER 8 THE MODEL IN PERSPECTIVE

Relation to Other Work 203

Introduction 203

The Work of C.G. Moore 204

The Work of S.R. Arora and A. Gallo 205

The Work of H. Tanaka 207

New Material 207

Suggestions for Further Research 209

APPENDIX A THE EXPONENTIAL DISTRIBUTION 213

APPENDIX B A SOLUTION TECHNIQUE FOR

MARKOVIAN QUEUEING NETWORKS 218

BIBLIOGRAPHY 229

vili

LIST OF FIGURES

Figure Title Page

2-1 The Hound Robin Scheduling Algorithm 16

2-2 The Foreground Background Scheduling Algorithm 16

2-3 Queueing lodels of Quantum Controlled Service

Disciplines 30-31

3-1 Two Queues in Series 64

3-2 Farallel Servers 65

3-3 Terminal Feedback 66

3-4 Internal Feedback 66

3-5 Arbitrarily Connected Queueing Network 67

3-6 Cyclic Queue 68

4-1 Program Behavior 78

4-2 Memory Partition Behavior 78

4-3 Central Server Model of Multiprogramming 87

6-1 Effect of Buffer Size Variation on Relative

Performance 151

6-2 Page Traffic 3ehavior 169

6-3 Effect of Page Replacement Algorithm and Speed of

Page Transfer Processor on Relative Performance 176

7-1 Hyperexponential Dedicated Peripheral Processors 184

7-2 Erlang Sum Dedicated Peripheral Processors 186

7-3 Hyperexponential CPU with Processor Sharing 191

7-4 Specialized Time-Sharing Model 195

7-5 Open Network Model 198

7-6 Equivalent Closed Network Model 202

lx

LIST OF TABLES

Table Title Page

2-1 Research and Survey Papers Dealing with the Analy-

sis of Quantum Controlled Service Disciplines 32-33

4-1 Relative Frequency with which Programs Completing

CPU Processing Requests Select Various Paths 83

4—2 Derived Results Concerning Program Behavior 98

5-1 Algorithm Operation 119

5-2 Storage Allocation 121

5-3 Algorithm Operation for Queue Dependent Servers 128

6-1 Optimal Buffer Size 1^5

6-2 System Performance as a Function of Buffer Size

6-3 System Characteristics at Points of Optimal

Performance 156

SYNOPSIS

The major portion of this thesis is devoted to the

development, analysis and application of the central server

model of multiprogramming. This model represents the overall

behavior of large scale multiprogramming systems in terms of

a network of queues. Each processing element and active pro-

gram in the system being modeled is explicitly represented.

In addition, the effect on overall system performance of

random variability in individual program behavior is implic-

itly taken Into account.

The mathematical treatment of the central server model

begins with a derivation of the steady state distribution.

The properties of this distribution are then examined in a

series of informal theorems and corollaries. Following this

a number of highly efficient computational algorithms are

developed for numerically evaluating the steady state distri-

bution In specific Instances. These algorithms, which are

applicable to a wide class of queueing networks, make it

possible to easily carry out computations which would other-

wise be near or in some cases even beyond the limits of

current technology. The value of these algorithms thus ex-

tends well beyond the context of the thesis Itself.

In addition to these analytic and computational results,

the central server model is also applied to three specific

problems in computer systems analysis. These problems

xi

involve the optimal specification of buffer size for tape-

like devices, the optimal allocation of processing requests

among a set of functionally equivalent peripheral processors

such as disks and drums, and the optimal allocation of main

memory in systems employing demand paging.

All three problems generated unanticipated results. In

the first case it was discovered that, with the initial over-

head per transfer held constant, optimal buffer size decreases

as the transfer rate of the associated peripheral processor

Increases. Analysis of the second problem revealed that

optimal performance is attained when the fastest processor

is receiving more than its proportional share of processing

requests and is in effect creating a system bottleneck.

Finally it was shown in the third problem that in certain

cases it is more important to have efficient page replacement

algorithms in systems with fast page transfer processors

than it is in systems with slow page transfer processors.

The contents of each chapter of this thesis may be

briefly summarized as follows:

Chapter 1 presents a discussion of the merits of queueing

network models and a guide to the remainder of the thesis.

Chapter 2 introduces some basic queueing theoretic notions

and then reviews a total of fifty-five papers concerned

with the application of queueing theory to computer systems

analysis.

xii

Chapter 3 briefly traces the development of analytic methods

and models in the field of queueing network research.

Chapter 4- provides the basic motivation for the central ser-

ver model and also examines some of the model's elementary

properties.

Chapter 5 presents a derivation of the steady state distribu-

tion for the central server model and an examination of the

analytic and computational aspects of this distribution.

Chapter 6 explores the applications of the central server

model to problems of buffer size determination, peripheral

processor utilization and page traffic balancing.

Chapter 7 develops a number of extensions to the basic

central server model which make it possible to represent

more general classes of systems.

Chapter 8 examines the relationship between this thesis and

previous research. In addition a number of problems are

presented for future consideration.

Appendix A discusses the nature of the exponential distribu-

tion with emphasis on the so-called 'memoryless* property.

Appendix B provides a detailed explanation of the powerful

but little known solution technique which was used in Chapter

5 to obtain the steady state distribution for the central

server model.

xiii

CHAPTER 1: IKTiiODuCTION

THE NEED FOR QUEliEING NETWORK MODELS

Large scale multiprogramming systems are typically com-

posed of a number of individual processing elements such as

computational processors, device controllers, data channels

and so forth. These processing elements normally operate in

parallel with one another subject to constraints generated

by the programs which run on the system. That is, even

though the processing elements which make up a multipro-

gramming system may be capable of fully parallel operation,

the degree of parallelism which the system actually attains

is always limited by the sequential nature of the processing

requests that individual programs generate. Thus any model

of a multiprogramming system must Incorporate both parallel

processing capabilities and sequential processing constraints,

Random variability also has a significant effect on the

performance of multiprogramming systems. Essentially, this

factor creates the possibility of queueing delays even though

the average Interval between arrivals at a system processor

may be greater than the average service time per processing

request. queueing delays created by random variability work

in conjunction with sequential processing constraints to

further reduce the degree of parallelism In multiprogramming

systems. The effect of this factor may be quite significant.

For example. In the case in which all active programs have

requests pending for the sa^e processing element at the same

time, parallelism may entirely disappear. Hence any realis-

tic multiprogramming model must include random variability

along with parallel processing capabilities and sequential

processing constraints.

One of the primary purposes of this thesis Is to demon-

strate that all three of these factors can be represented

quite naturally within the framework of a queueing network

model. In such a model each server in the network corresponds

to an individual processing element, the path that a cus-

tomer follows while moving through the network corresponds

to the sequence of processing requests generated by a partic-

ular program, and the random variability in service times

and customer movement corresponds to the random variability

in the actual system. In addition the number of customers

In the network at any time clearly corresponds to the degree

of multiprogramming of the system being represented.

Queueing network models may be addressed to a number of

problems in computer systems analysis. For example. It is

possible to study the effects of various modifications In

system hardware by utilizing the correspondence between

actual processor speed and network service time or the corre-

spondence between main memory size and number of customers

in the network. In a somewhat different context, the corre-

spondence between program behavior and the paths that cus-

tomers follow as they move through the network can be used to

study problems such as the optimization of program structure

with respect to system hardware. Finally, it is possible to

study more complex problems such as the optimal allocation of

main memory in systems with demand paging. Problems of this

type involve the interaction of several system components

and cannot be adequately treated by simpler models which take

only one processing element Into account.

Despite the obvious advantages of queuelng network

models, very few analyses of such models have appeared in

the literature. This is no doubt related to the mathematical

difficulties associated with the general analytic treatment

of models of this type. However, in many specific cases of

Interest - including those considered in this thesis - it is

possible to significantly reduce the mathematical complexity

of the problem by applying a powerful solution technique

which was originally developed by Jackson (48) in 1963 and

then independently discovered by Gordon and K'ewell (41)

shortly thereafter. Since this solution technique is not

widely known within the field of computer systems analysis,

its most significant aspects have been reproduced in Appendix

B. It is hoped that the increased availability of this tech-

nique together with the examples and supplementary numerical

algorithms developed in this thesis will generate additional

interest in this area and will ultimately lead to a series

of highly useful and revealing queueing network models.

ORGANIZATIONAL REMARKS

A brief sugary of the contents of each chapter of this

thesis is provided in the Synopsis. It should be apparent

from this summary that Chapters 4, 5 and 6 present the bulk

of the new material in the thesis. These chapters are en-

tirely self-contained and should be readily understandable

to anyone familiar with queueing theory and operating syste-n

fundamentals.

Readers more interested in practical applications may

wish to restrict their attention to the section of Chapter 4

which deals with specification of the model, the section of

Chapter 5 which deals with system performance, and the three

examples in Chapter 6. The extensions discussed in Chapter 7

and the suggestions for further research presented in Chap-

ter 8 should also be of interest to this group.

The more mathematically inclined readers will probably

wish to read all of Chapters 4 and 5« However, the only

application of real mathematical interest in Chapter 6 is

the one dealing with peripheral processor utilization. In

addition, any mathematically inclined reader not already

familiar with the work of Jackson (4-8) and Gordon and Newell

(41) should find Appendix B extremely valuable. The work

of Jackson and Gordon and Jewell is also discussed in more

qualitative terms in Chapter J.

The survey presented in Chapter 2 is self-contained and

should provide a helpful introduction to students and other

individuals entering this field of research. In addition.

Chapters 3 and 8 contain more specialized surveys. All three

of these chapters contain discussions of unsolved and poten-

tially significant research problems.

CHAPTER 2: SURVEY OF THE APPLICATIONS OF
QUEUEING THEORY TO COMPUTERS

ESSENTIALS OF QUEUEING THEORY

Queueing theory may be thought of as a collection of

analytic techniques and mathematical results all related to

the analysis of a particular abstract process. Essentially

this process is one in which customers arrive at some service

facility, present that facility with requests for service,

and then leave the facility after their individual requests

have been satisfied. In this general setting queueing theory

deals with such questions as the number of customers at the

facility at any time, the total amount of time required to

process individual customers through the facility, and the

nature of the periods during which the facility is continu-

ously busy serving customers.

Random variability is one of the essential distinguish-

ing features of all queueing systems. Basically, there are

two ways such variability can enter: either in the time

Intervals between the arrival of successive customers, or In

the amount of service that individual customers request.

In most queueing systems both these factors are assumed to

be non-constant random variables. However, there are some

cases of Interest in which one of these factors is constant.

Systems in which both factors are constant or cycle deter-

mlnistically through a given set of values are not tradi-

tionally regarded as falling within the realm of queueing

theory since a different set of mathematical techniques is

required for their analysis.

In the standard terminology of queueing theory, the

length of the Intervals between the arrival of successive

customers is determined by the arrival process and the amount

of service that each customer requests is determined by the

service time distribution. If the inter-arrival intervals

are independent of each other and exponentially distributed

(see Appendix A), the arrival process is known as a Polsson

process. This process is of fundamental Importance in queue-

ing theory because of its mathematical simplicity and its

reasonably close correspondence to many physical situations.

If the service time distribution is also exponential, further

simplifications are introduced, but It is not always neces-

sary to make this additional assumption in order to obtain

significant results.

A queueing system is characterized by specifying an

arrival process, a service time distribution, and a third

component known as a service discipline. This third com-

ponent specifies the manner In which service is dispensed to

customers who are present at the service facility. For

example, customers may be served on a first come first served

basis, or in accordance with an externally assigned set of

priorities, or on a rotating (i.e., round robin) basis.

A number of service disciplines which are important in

the analysis of computer systems will be discussed more

thoroughly in later sections of this chapter.

Once a queueing system has been specified by identify-

ing its three primary components, the analysis of the system

can begin. As already mentioned, the questions of Interest

typically concern the number of customers at the facility

at any given time, the total amount of time necessary to

process particular customers through the system, and the

length of the periods during which the service facility is

continuously busy serving customers.

Because random factors operate in all queueing systems,

the questions of interest can only be answered in terms of

random variables or expected values of random variables. As

an example of this type of solution, suppose that an initial

reference point is established and designated as time zero,

and let time t denote the point in time that is t seconds

after time zero. Assuming that the number of customers in

the system at time zero is known and that the arrival proc-

ess, the service time distribution and the service disci-

pline are all specified, it is then conceptually possible

to calculate P (t) - the probability that the number of

customers in the system at time t is equal to n - for

each value of n (i.e., for n=0,l,2, ...).

In most queueing systems of interest the value of Pn(t)

tends to stabilize after an Initial period of fluctuation.

That is, the probability distribution characterizing the

number of customers in the system eventually becomes invari-

ant with respect to time. Systems which stabilize in this

manner are said to become stationary, and the stable distri-

butions which are eventually attained are known as steady

state, equilibrium or stationary distributions.

In ergodlc systems the final steady state distribution

is Independent of the state the system starts In at time

zero. Thus, a steady state distribution can be used to

characterize an ergodic queuelng system when all that is

known Is the arrival process, the service time distribution,

the service discipline, and the fact that the system has

been in operation for a relatively long period of time.

All the research papers to be discussed in this chapter

and the next are directed towards obtaining steady state

solutions for ergodic queuelng systems. However, It should

be noted that it is sometimes possible to obtain time depen-

dent solutions which, in effect, describe the behavior of

systems as they progress from some Initial state to the

equilibrium state. Because of their mathematical complexity

and specialized nature, the solutions obtained for the time

dependent case have never been directly applied to the analy-

sis of computer systems. Takacs (78) presents a comprehen-

sive account of the known results in this area.

Before closing this section it would be worthwhile to

mention a few modifications of the basic queueing process

which are of interest in certain situations. The first of

these concerns the number of servers which make up the

service facility. The assumption here is that each server

is capable of providing service to only one customer at a

time. Thus, if there are N customers present at a service

facility made up of S servers and N is greater than S, then

S customers will be receiving service and N-S customers will

be waiting. If N is less than or equal to S, all N customers

will be receiving service and no customers will be waiting.

Most applications of queueing theory to computers assume S is

equal to one, but there are examples such as multiprocessing

systems for which some other value of S would be appropriate.

It is important to distinguish the case of multiple

servers within a single service facility from the case of

queueing networks. In queueing networks there are a number

of different service facilities organized so that customers

leaving one may proceed to another. Thus, separate queues

build up at each service facility in the network. Network

parameters include the number of servers present at each

facility and the probability that a customer leaving a par-

ticular facility will proceed to another specified facility.

A number of papers dealing with the theory of queueing net-

works are discussed in Chapter 3«

Now that the fundamental aspects of queueing theory

have been introduced, it is possible to examine some of the

10

applications of this branch of mathematics to computer sys-

tems analysis. Each of the remaining sections of this chap-

ter will focus on one particular area of application.

11

QUANTUM CONTROLLED SERVICE DISCIPLINES

In Interactive time-sharing systems it is usually con-

sidered undesirable to keep a short Job waiting simply

because a substantially longer Job has entered the system

sometime before it. As a result such systems do not normally

process Jobs strictly on a first come first served (FCFS)

basis. Instead they employ scheduling algorithms which

attempt to insure that relatively short jobs do not have to

wait in the system for excessively long periods of time.

Scheduling algorithms which provide short Jobs with this

type of preferential treatment have been the subject of

extensive analysis over the past few years. Since most of

the algorithms studied belong to the class of quantum con-

trolled service disciplines, it is useful to consider the

structure of this class as a whole before examining the

behavior of specific algorithms.

The essential feature which characterizes quantum con-

trolled service disciplines is that each Job is permitted to

run on the system (i.e., the CPU) for a certain period of

time known as a quantum. If a Job terminates before its

quantum has expired, it leaves the system immediately.

Otherwise, it returns to the queue of waiting Jobs when

its quantum expires. In either case, another Job is then

immediately selected from the queue of waiting Jobs and

granted the next quantum of CPU processing. The algorithm

12

continues to operate in this manner so long as there are any

jobs In the system waiting- for service.

An important feature of quantum controlled service dis-

ciplines, in addition to the relative ease with which they

can be implemented, is the fact that they can provide prefer-

ential treatment to short jobs evei though they presume no

a priori knowledge of the amount of processing that incoming

jobs require. As will be demonstrated in the next section,

it is theoretically possible to devise service disciplines

which are superior to the quantum controlled type if such

a priori Information is available. However, because such

information is difficult and oftentimes impossible to reli-

ably obtain, designers of Interactive time-sharing systems

will probably never entirely discard service disciplines of

the quantum controlled type.

The mathematical analysis of quantum controlled service

disciplines has generated a surprisingly large number of

publications. In order to categorize these publications and

present them in a relatively coherent manner, the following

strategy has been adopted. First, a set of five components

which are present in all queueing theoretic models of quantum

controlled service disciplines will be identified. Each

component will be considered individually, and all the sub-

categories which have been studied in the literature will

be discussed. Then each paper will be classified by specify-

ing the particular sub-category of each component that was

13

used to construct the model examined in the paper. The final

outcome of this procedure is presented in Table 2-1 (pp. 32-

33) f°r a total of twenty-nine papers which were published

in the period 1964-1970.

The five components used to make this classification

are the scheduling algorithm, the quantum type, the service

time distribution, the arrival process and the overhead

assumption. These components along with their associated

sub-categories are represented schematically in Figure 2-3

(pp. 30-3D- The selection of these components was motivated

by earlier survey papers prepared by Coffman (18), Estrin

and Klelnrock (31), and McKinney (6l), and so the material

presented here may be regarded as a natural extension of

this earlier work.

Scheduling Algorithms

As indicated in Figure 2-3, only two components are

required to specify a quantum controlled service disci-

pline: the scheduling algorithm, which determines the order

in which jobs are selected for service at the end of each

quantum, and the quantum type, which determines the amount

of processing time allocated to a job once it has been

selected for a quantum of service.

Essentially only two classes of scheduling algorithms

have been considered in the literature, round robin (RH) and

foreground background (FB). Under the RR discipline jobs

entering the system form a single queue in order of arrival.

14

Each time a new job is to be selected for a quantum of pro-

cessing, it is taken from the head of the queue. If a Job

requires additional processing at the end of a quantum, it

is placed at the tail of the queue as if it were a new Job.

Thus, before a Job can receive an additional quantum, each

Job which was present in the system at the end of its pre-

vious quantum must first receive a quantum of its own. The

operation of such a scheduling algorithm is depicted sche-

matically in Figure 2-1.

Under the FB discipline, jobs entering the system also

form a single queue in order of arrival. This queue, which

is known as the foreground queue, is served on a FCFS basis

with each Job being granted one quantum of processing. If

a job requires additional processing at the end of its quan-

tum, it does not return to the tail of the foreground queue

as in the HR algorithm but instead returns to the tall of the

first background queue. After a wait in the first background

queue, a Job receives its second quantum of processing and

then proceeds to the third background queue, then the fourth,

and so on until its processing requirement is finally satis-

fied.

An important feature of FB algorithms is that each time

a new job is to be selected for a quantum of processing, it

is taken from the head of the highest priority non-empty

queue. In this context the foreground queue has highest

priority, the first background queue has second highest

15

ARRIVING
JOBS

JOBS REQUIRING ADDITIONAL
QUANTA OF SERVICE

^j QUEUEI—(CPU COMPLETED
JOBS

Figure 2-1

The Round Robin (RR) Scheduling Algorithm

ARRIVING
JOBS

—X Nth BACKGROUND QUEUE

JOBS REQUIRING ADDITIONAL
QUANTA OF SERVICE

—»| 2nd BACKGROUND QUEUE h

1—a 1st BACKGROUND QUEUE h

H FOREGROUND QUEUE CPU COMPLETED
JOBS

Figure 2-2

The Foreground Background (FB) Scheduling Algorithm

16

priority, and In general the n— background queue has n+1—

highest priority. Within the foreground level and each back-

ground level jobs are queued In the order in which they

arrive at that particular level and served on a FCFS basis.

The entire process is illustrated in Figure 2-2.

To complete the description of the F3 algorithm it Is

necessary to discuss the disposition of jobs which complete

a quantum of service on the lowest priority background level

but still require additional processing. One fairly common

procedure is to continue to give such jobs additional quanta

until they finally run to completion. If in the meantime a

new Job enters the system, that job will begin to receive

service as soon as the job being served comes to the end of

its next quantum since the new Job will be In a higher pri-

ority queue. This particular method of managing the

lowest priority background queue is known as the quantum

controlled first come first served discipline.

A second alternative is to operate the lowest priority

background queue under a RR discipline so that a job com-

pleting a quantum of service immediately cycles back to the

tall of that queue. It is also possible to let Jobs in the

lowest priority background queue simply run to completion

without any possibility of preemption. This third alterna-

tive may be thought of as a special case of either of the

first two in which the quantum length of the lowest priority

queue has become infinite.

17

Still another way to deal with this problem is to postu-

late the existence of an infinite number of background levels.

Once this is done, the problem disappears entirely since

there no longer is a lowest priority queue. While this

solution in no way affects the treatment given to short and

medium length jobs, it elegantly removes the singularity

associated with the lowest priority queue and thus gives the

algorithm a more uniform structure.

For notational purposes, FB algorithms incorporating

an infinite number of background levels will be identified

as FB algorithms while FB algorithms Incorporating a finite

number of background levels will be identified as FBN algo-

rithms. A specific example with, for example, a total of

three levels (two background and one foreground) will be

identified as an FB- algorithm. In order to keep the notation

simple, no attempt will be made to specify the way in which

the lowest priority queue is managed in the finite case.

There are a few minor variants of the basic RR and FB

scheduling algortlhms which have received some attention in

the literature. These algorithms will be identified for

purposes of this discussion as follows:

RR/D Round Robin with Delayed Entry - Jobs which arrive

at the system do not enter the round robin cycle until

after some period of time has elapsed. This algorithm

might be useful in modeling a system in which the

arrival of new Jobs Is detected by the periodic polling

18

of a set of flags. Kleinrock (56) applies the label

"selfish round robin" (SRR) to a particular subcase of

this class, while Krishnamoorthi and Wood (60) refer

to another subcase as a schedule queue discipline.

FB/P Foreground Background with Priority Entry - This algo-

rithm is identical to the FB algorithm except that

Jobs may enter directly at any of the background level

queues as well as at the foreground level. The highest

priority class jobs enter at the foreground level and

Jobs of progressively lower priority enter at progres-

sively higher background levels.

FB/PP Foreground Background with Priority Entry and Priority

Service - In this modification of the FB/P algorithm,

priority class not only determines a Job's initial

point of entry into the system but also determines the

intra-level service order. That is, within each level,

higher priority Jobs are served first and Jobs of the

same priority are served on a FCFS basis.

FB/PO Foreground Background with Priority Entry and Oldest

Job First Service - In this modification of the FB/P

algorithm. Jobs within a particular level are served

in the order of their initial arrival at the system

(I.e., oldest Job first) rather than in the order of

their arrival at that level (i.e., FCFS).

FB/NQ Foreground Background with Non-Standard Queue Selection

- In standard FB algorithms, the foreground queue has

19

highest priority and the n— level background queue

s t has n+1— highest priority. FB/NQ algorithms postu-

late some other priority ordering. However, Jobs-

still enter at the foreground level and work their

way up through successive background levels.

Quantum Types

As stated previously, in order to specify a quantum

controlled service discipline it is necessary to Identify

both the scheduling algorithm and the quantum type. When

classifying quantum types it is convenient to first make

the distinction between deterministic quanta and random

quanta. In the deterministic case the length of a quantum

is completely determined once a set of associated values

known as quantum defining factors is specified. In the

random case the quantum defining factors serve only to

determine the probability distribution characterizing the

length of the associated quantum; quantum length itself is

thus a random variable rather than a constant in this case.

If a Job terminates before its final quantum expires,

it leaves the system immediately and a new Job Is then allo-

cated the next quantum of processing. Thus, in systems

employing deterministic quanta, it is not necessarily true

that all quanta corresponding to a given set of quantum

defining factors have the same actual length. However, all

quanta corresponding to a given set of quantum defining

20

factors do have the same maximum length.

In the case of random quanta, the random variable asso-

ciated with a particular set of quantum defining factors may

correspond to either the maximum quantum length or the actual

quantum length. This additional degree of freedom results

from the fact that since quantum size is already a random

variable its distribution function can be chosen to reflect

the fact that jobs terminate at arbitrary points in time.

In the quantum identification scheme to be used in this

discussion, the initial letter will indicate whether the

quantum is deterministic (D) or random (R), and the follow-

ing letters will indicate the quantum defining factors.

Using this scheme, seven different quantum types which have

appeared in the literature may be identified as follows:

DI Identical length quanta are allocated to all jobs.

HI The Identical distribution characterizes quantum

length for all jobs.

DP Different classes of Jobs (i.e., different priority

groups) are Identified with each class having its

own associated quantum length.

DN Quantum length is defined as a function of the number

of quanta a job has already received in an RR system

or the level it has attained in an FB system.

RN At each level in an FB system, quantum length is char-

acterized by a particular distribution function.

DPN Quantum length is defined as a function of both the

21

assigned priority class of a job and the number of

quanta the job has already received In an Rfl system

or the level it has attained in an FB system.

DD Quantum length is defined as a function of some dy-

namic property of the system such as the number of

jobs currently present or the number of jobs which

have arrived in the recent past.

A number of authors have also investigated deterministic

quanta in the limiting case where quantum size approaches

zero. The term "processor sharing", which is due to Klein-

rock (53). is commonly used to identify this limiting case.

The following quantum types have appeared in conjunction

with processor sharing systems:

DIZ Limit of type DI quanta as quantum size approaches

zero.

DPZ Limit of type DP quanta as quantum size approaches

zero.

DPNZ Limit of type DPN quanta as quantum size approaches

zero.

Once a quantum controlled service discipline has been

defined by specifying a scheduling algorithm and a quantum

type, its behavior may be evaluated by any of a number of

different methods. For example, it is possible to implement

the discipline within an actual system and the make appro-

priate measurements while the system is operating. Alter-

natively, it is possible to incorporate the discipline into

22

a simulation model and then evaluate the model using Monte

Carlo techniques. A third possibility is to incorporate

the discipline into a mathematical model and then evaluate

the model analytically. This third possibility will be

examined more closely in the discussion which follows.

The simplest mathematical model which can be applied

to the evaluation of quantum controlled service disciplines

is probably the single server queue. For purposes of this

discussion it is useful to consider such models as being

composed of two independent components, a service disci-

pline and a stochastic environment. The first component

has already been discussed in considerable detail, and so

to complete the description of these models it is only

necessary to consider the second component.

A stochastic environment may be defined as everything

which must be added to a service discipline in order to

completely specify a particular queueing model. More speci-

fically, a stochastic environment consists of an arrival

process, a service time distribution and an overhead assump-

tion. The nature of each of these three components will

now be considered in some detail.

Overhead Assumptions

Overhead assumptions are needed to specify the amount

of time necessary to transfer control of the CPU from one

Job to another when a quantum expires or a job terminates.

23

Four overhead assumptions which have been used in conjunction

with quantum controlled service disciplines may be identified

as follows:

Z Zero Overhead - The CPU is switched from one job to

another in zero time.

C Constant Overhead - A fixed amount of time is required

to switch the CPU from one job to another.

CPN Constant Overhead for Specific Situations - The amount

of time required to switch the CPU from one Job to

another is some known function of the Job's priority

class and the number of quanta it has already received

in an RR system or the level it has attained in an FB

system.

R Random Overhead - The amount of time required to

switch the CPU from one job to another Is an arbi-

trarily distributed random variable.

Arrival Processes

In an early paper, Kendall (50) classified a number of

arrival processes and service time distributions which are

important in the theory of queues. Using an expanded and

slightly modified version of Kendall's notation, the arrival

processes which have proven useful In the analysis of quantum

controlled service disciplines may be identified as follows:

B Bernoulli Arrivals - At the end of each quantum, a

Bernoulli trial is made to determine whether or not a

2^

new job is to arrive. The probability of success

(i.e., an arrival) is assumed to be the same in each

trial. If quantum length is constant (i.e., type DI),

Bernoulli arrivals imply geometrically distributed

inter-arrival intervals.

M Poisson Arrivals - In any time interval of length T,

the probability that there will be exactly k arrivals

(aT)k -aT is equal to . .' e where a is some positive

constant. This implies that inter-arrival Intervals

are exponentially distributed with mean 1/a.

Mf Finite Source Poisson Arrivals - If the number of Jobs

at the CPU is equal to j, then the amount of time

until the next arrival is an exponentially distributed

random variable with mean l/a(N-j) where a is some

positive constant and N is an integral constant. No

arrivals are possible when the value of j reaches N,

and hence queue size Is bounded by N.

G General Arrivals - The inter-arrival intervals are

entirely arbitrary and possibly correlated random

variables. Usually, all that is possible under gen-

eral arrival assumptions Is to state the solution of

one problem in terms of the solution of some other

problem.

In time-sharing systems, each active terminal functions

as a source of jobs (i.e., CPU processing requests). Since

a terminal is not normally permitted to generate a new pro-

25

cessing request until its previous request has been completed,

the job arrival rate typically declines as the number of in-

complete Jobs waiting at the CPU increases. However, this

effect becomes less marked as the total number of active

terminals increases and, in the limiting case where the num-

ber of active terminals approaches infinity, it disappears

entirely.

Both Bernoulli and Poisson arrival processes correspond

to this limiting case since neither exhibit any correlation

between arrival rate and queue length. Hence these processes

are sometimes referred to as infinite source arrival pro-

cesses and are best suited for modeling time-sharing systems

with a large number of active terminals. While the Bernoulli

arrival process may be somewhat easier to conceptualize

because of its discrete nature, both processes are mathe-

matically attractive since both Incorporate the memoryless

property discussed in Appendix A.

The finite source Poisson arrival process explicitly

represents the case in which the arrival rate decreases as

the number of Jobs already waiting for CPU service increases.

This is done by assuming that the length of time between the

completion of a Job associated with a particular terminal

and the generation of the next Job by that same terminal is

an exponentially distributed random variable with mean 1/a.

This random variable, which is commonly referred to as

"think time", is assumed to have the same distribution at

26

all terminals. Then, if the total number of terminals in

the system is equal to N and the number of jobs at the CPU

is equal to j, it follows that the amount of time until the

next arrival is an exponenitally distributed random variable

with mean l/a(N-J). This is the rationale underlying the

finite source Foisson arrival process.

Service Time Distributions

As is evident from the preceding discussion, one way of

characterizing arrival processes is by defining the distri-

bution of their inter-arrival intervals (i.e., the intervals

between the arrival of successive customers). These same

distributions are often used to characterize the amount of

processing time that individual Jobs request, and when this

is done the abbreviation used to identify the arrival pro-

cess is also used to Identify the corresponding service time

distribution. As the following list indicates, three of the

four service time distributions which have been analyzed In

the literature exhibit this correspondence.

B Bernoulli Sum Service Times - At the end of each quan-

tum, a Bernoulli trial is conducted to determine

whether the job which has just completed the quantum

is to leave the system or re-cycle for at least one

more quantum of processing. The probability of leaving

the system is assumed to be the same In each trial.

Thus the total amount of service time required by a

27

Job Is distributed in the same manner as the inter-

arrival Intervals of a Bernoulli arrival process

operating with the same quanta.

M Exponential Service Times - The total amount of pro-

cessing time required by each job is an exponentially

distributed random variable. These random variables

are all independent and identically distributed.

G General Service Times - The total amount of processing

required by each arriving job is an arbitrarily distri-

buted random variable. These random variables are all

Independent and Identically distributed.

H Hyperexponential Service Times - The total amount of

processing time required by an arriving Job is a hyper-

exponentially distributed random variable. These

random variables are all independent and Identically

distributed.

In practice, the hypothesis of exponential service

times has proven to be a crude but not unacceptable approx-

imation to observed service times. However, Walter and

Wallace (82) indicate that a more precise fit to empirical

data can be obtained by assuming that service times are

hyperexponentially distributed. One way to Interpret the

hyperexponentlal assumption is to imagine that there exist

two classes of Jobs, class A and class B, with incoming

jobs falling into class A with probability p and into

class B with probability p_ (p + p_ • 1). Jobs in class A

28

are assumed to have exponentially distributed service times

with mean 1/a while jobs in class B are assumed to have

exponentially distributed service times with mean 1/b (a^b).

Under these conditions service times will be distributed as

p.ae" + Pgbe" which is a hyperexponential density func-

tion of the second degree. In interactive time-sharing

systems, class A may be associated with editing requests

and class B with all other requests.

Summary and Evaluation

In summary, a quantum controlled service discipline is

defined by specifying its scheduling algorithm and Its quan-

tum type. Once a service discipline has been defined. It

may be evaluated by the use of queueing theory. To do this

it Is necessary to embed the service discipline in a sto-

chastic environment which, as a minimum, must consist of an

arrival process, a service time distribution and an overhead

assumption. This procedure for model construction is de-

picted in Figure 2-3.

As Indicated in Table 2-1, a large body of published

research has been devoted to analyzing models which fall

within the framework of Figure 2-3. Most of the papers

29

w
Q- o

op
H pin
> H-

O
CO

CO

s
En W

ft"
P EH

o
B5
M
i-l

.=>
Q I o
CO

m o 3

o
Q
2;

o
M
En
CO
M
a
H
«

IP

He
H§

(3

I
CNJ

CO
<D
C

•H
•H
P.

•H
O

a)
o

t
©

CO

TH
0)
H
r-l
O

•P
G o o

0) ^

60 3
r* a

o
CO

rH
01

TH
O
as

9 •H

g
3

30

3 E-<
&

W
2

W H
O J
M CM
£ M
« O
W CO
CO M

Q

O
2
H
1-3

o
u
3

o

CJ>
M
E-<
CO
H
S5
M-

W
Q

CO
EH

H

EH
H

M

O
«
w
N

>

CO
o
CM

IS

H
N

CM a
CO
CM
Q

IN
 H

IQ

I la

—^ IQ

p

JCM

-lM
IQ

4

G
o
CM

CL,

CM
CM
\
CQ E
CM
"V
CD

1tt

<D
c

o

0)
o

CQ -H
>
JH
<D

CO

<L>
43
-P

o

Cn
3
-p
o

•p
CO

%

•p
CO
p

SI

i
CM

0)
h

31

AUTHOR (Ref. No.),
DATE

Adiri &
Avi-Itzhak (5),1969

Baskett (8),1970

Chang (13).1966

Coffman (17).1966

Coffman (18),1967

Coffman (19),1968

Coffman (20),1968

Coffman &
Klelnrock (22),1968

Coffman & Krishna-
moorthl (23), 1964

Coffman & Muntz
(24),1969

Coffman, Muntz &
Trotter (25),1970

SCHEDULING
ALGORITHM

QUANTUM
TYPE

ARRIVAL
PROCESS/
SERVICE
DISTR.

OVER
HEAD

RR DI Mf/M C

RR DIZ Mf/H Z

RR HI M/B Z,R

RR, FBp , FBJJ DI.DN.DD M/M, Mf/M Z,C

00
DIZ

 SURVEY

RR,FB2 DI M/M c

RR,FB2 DD 3/B z

HR,FBN DI.DIZ B/B, M/M Z

FB /P
00

DPZ

RR.RR/D DI Mf/B C

RR,FB
00

BR

DIZ

DIZ

M/G

M/M

Estrln &
Klelnrock (31),1967

"•* •• SURVEY

Fife (34),1966 FB-/N DN Mf/H C

Greenberger (44) ,
1966

RR DI Mf/M C

Klelnrock (5D.1964 RR DI B/B

Table 2-1 Part A

Research and Survey Papers Dealing with the Analysis of

Quantum Controlled Service Disciplines

32

AUTHOR (Ref. No.),
DATE

SCHEDULING
ALGORITHM

QUANTUM
TXPE

ARRIVAL
PROCESS/
SERVICE
DISTR.

OVER
HEAD

Klelnrock (53).1967 RR DIZ.DPZ M/M Z

Kleinrock (54),1968 RH DIZ Mf/M Z

Klelnrock (55),1969 ALL TYPES DPN G/G CPN

Klelnrock (56),1970 RR/D DIZ M/M Z

Klelnrock &
Coffman (57),1967

ALL TYPES DPN
DPNZ

G/G Z

Krlshnamoorthl
(59),1966

RR DI Hf/M C

Krlshnamoorthl &
Wood (60),1966

RH.RR/D DI Mf/M C

McKlnney (6l),1969 SURVEY

Patel (6^),196^ RH.FB^/PO DI.DN Mf/G, M/G Z,C

Rasch (66),1970 RR DI M/M z,c

Sakata, Noguchi &
Olzuml (68),1969

RR DIZ M/G z

Scherr (69).1965 RR DIZ Mf/M 7.

Schrage (70),1967

Shemer (75),1967

FB
00

RR.FB^/P

RN.DN
DIZ
DI.DN

M/G, M/M

M/M

z

z

Table 2-1 Fart B

Research and Survey Papers Dealing with the Analysis of

Quantum Controlled Service Disciplines

33

present an analysis of a specific model: that is, of a par-

ticular service discipline operating in a particular stochas-

tic environment. Usually the point of the analysis is to

obtain an algebraic formula which expresses the expected

waiting time of a job as a function of the Job's execution

time. This makes it possible to determine the extent to

which short Jobs are favored over long Jobs. In addition,

since these formulas typically Include quantum length, over-

head time, arrival rate and mean service time as parameters,

it is possible to examine the treatment of long and short

Jobs under a wide variety of conditions.

There are a number of uses to which such formulas might

be put. Perhaps the most obvious is the determination of

optimal quantum length for models in which both the quantum

length and the overhead time are non-zero. In such models

longer quanta reduce overhead but also increase the expected

waiting time for short Jobs. On the other hand, very short

quanta result in a high percentage of overhead, thus in-

creasing the expected waiting time for all Jobs including

the short ones. Hence it is reasonable to suppose that an

optimal quantum length exists at some Intermediate point.

To determine this optimal length It is first necessary

to define exactly what it is that is being optimized. A

convenient way to approach this problem is to define a cost

function which reflects the delays associated with the system

and then to try to minimize cost. Since quantum controlled

34

service disciplines are primarily designed to provide good

service to short jobs, it is reasonable to assume that the

cost associated with keeping a short Job waiting is greater

than the cost associated with keeping a long job waiting.

It is also reasonable to assume that the longer a Job is

kept waiting, the greater the cost.

The simplest way to represent these two assumptions

mathematically is to define the cost of keeping a Job with

total service time S waiting for a period of time T as

T»F(S) where F is a positive, non-increasing function of S.

Cost functions constructed in this manner have been analyzed

by Fife (3*4-), by Greenberger (^4), and most comprehensively

by Rasch (66). More Information must be collected before

any general results can be reported, but the potential for

additional work in this area is quite promising since a num-

ber of models have been solved analytically and only a very

few have been optimized with respect to quantum length.

A number of other significant problems in the area of

quantum controlled service disciplines also exist. For

example, it would be valuable to compare the performance of

RR and FB algorithms under a variety of overhead assumptions

to determine the optimal algorithm for a specific applica-

tion. The optimal choice could be specified under relatively

simple quantum assumptions (e.g., DI) or under more complex

quantum assumptions (e.g., DPN or DD). Note that It is

necessary to solve the optimal quantum length problem for

35

each specific algorithm before attacking this comparison of

optima problem. Fife (3^) deserves recognition for the

results he has obtained in this area, but unfortunately his

work is of somewhat limited appeal because of its numerical

rather than algebraic nature; all the other papers appearing

in Table 2-1 are distinctly algebraic.

Another consideration which naturally emerges from this

discussion is the relative Importance of the arrival process

and the service time distribution in optimization problems

in general. For example, do exponential and hyperexponential

service time distributions or finite and infinite source

arrival processes yield different optima? If so it is neces-

sary to examine the arrival and service time statistics very

carefully before selecting an algorithm. If not, it may be

possible to discfcver general guidelines which can be followed

with confidence in a variety of situations.

It should be clear from the preceding discussion that

even though a considerable amount of effort has already been

expended analyzing quantum controlled service disciplines,

many problems remain unsolved. However, these problems are

qualitatively different from the earlier ones in that they

deal with the optimization and comparative evaluation of

provlously analyzed models rather than the determination of

conditional waiting times for newly proposed models. Thus

solutions to these new problems will be built upon existing

knowledge in a way that is characterlctic of many other

branches of science and mathematics.

36

CONVENTIONAL FHIOrilTY DISCIPLINES

In most real-time systems, Incoming jobs are assigned

to different priority groups according to the relative ur-

gency with which they must be completed. Jobs which must

be completed in the shortest possible time are assigned to

the highest priority group, slightly less urgent Jobs are

assigned to the next highest priority group, and so on.

Note that a Job's priority group, which Is the basis for

providing preferential service, is specified at Job entry

time. This is in contrast with interactive time-sharing

systems employing quantum controlled service disciplines

since these systems use total running time as the basis for

providing preferential service even though this factor Is not

assumed to be specified at job entry time.

The service disciplines used in formulating queuelng

theoretic models of real-time systems are known as conven-

tional priority disciplines. These service disciplines all

exhibit the following three characteristics:

1. Jobs are assigned to priority groups at the time they

first enter the system.

2. Whenever a server becomes available it is always

assigned to a job from the highest non-empty priority

group.

3. A Job's priority group never changes.

37

Conventional priority disciplines may be partitioned

into a number of subcases by giving different interpreta-

tions to the notion of availability which appears in Char-

acteristic 2. For example, if a server becomes available

only after completing the processing of a job, the disci-

pline is known as non-preemptive or head-of-line. Under

this discipline, a Job is always allowed to run to comple-

tion even though a higher priority job may arrive while it

is being processed.

A second possibility is to assume that servers are

always available. Thus, if a higher priority Job arrives

while a lower priority Job is being served, the latter will

be ejected from the service facility and the higher priority

job will begin to receive service immediately. Disciplines

in which jobs can be ejected from the server in this way

are known as preemptive disciplines.

Preemptive disciplines may be further subdivided on

the basis of the treatment given to Jobs which return to

the service facility after having been preempted. If such

jobs are permitted to simply continue service from the point

where they were interrupted, the service discipline is known

as a preemptive-resume discipline. If, on the other hand,

Jobs are forced to return to their original starting points

and repeat everything they have already done, the discipline

is known as preeraptive-repeat-identlcal. This discipline is

of some Interest in computer applications where It may be

38

preferable to restart a job frc- its Initial point rather

than save all its status information and temporary storage

so it can be started ap-aln from the point of Interruption.

Freemptlve-repeat-identical disciplines are distin-

guished from preemptive-repeat-different disciplines by the

fact that, in the latter case, the amount of processing time

that a Job requests is re-calculated each time a Job is re-

started from its initial point after a preemption. Preemp-

tive-repeat-different disciplines appear to have few if any

applications in computer systems analysis and are mentioned

only for the sake of completeness.

An early example of the application of non-preemptive

priority disciplines to the analysis of computer systems is

presented by Chang and Wong (16). In a more recent paper,

Chang (15) presents a number of other examples involving

both non-preemptive and preemptive-resume disciplines. This

latter paper is also valuable for tutorial purposes since a

number of analytic techniques are carefully reviewed.

The discussion thus far has assumed that within each

priority group service is provided on a PCFS basis. It is

also possible to study conventional priority systems in

which the intra-group service discipline is of the quantum

controlled type. For example, Chang (14) has analyzed a

model in which each priority group functions as a type HR,

31, '/3, Z system, and Adlri (3), (4) has considered the

case in >Thich each priority group functions as a type HH,

39

DI, M/M, C system.

Both Chang (14) and Adlrl (3) assume that the priority

discipline operating between groups is of the preemptive-

resume type. In his more recent paper, Adiri (4) considers

three additional inter-group disciplines. The first assumes

that once a job has been allocated a quantum of processing,

no preemption is possible until the end of that quantum is

reached. Preemption occurlng at the end of a quantum is of

the preemptive-resume type.

In the second discipline jobs may be preempted at any

time, but preemption causes the intermediate results de-

veloped during the current quantum to be lost. That is, a

preempted Job is restarted from the beginning of the quantum

it was receiving when it was interrupted. This discipline

is thus midway between the preemptive-repeat-identical

discipline and the preemptive-resume discipline.

The third discipline is a combination of the second

discipline and the standard preemptive-resume discipline.

Preemption is permitted at any time and, if a job is pre-

empted during the initial overhead phase (I.e., the set-up

period) of the quantum, the quantum is considered lost and

the job is later restarted from the beginning of that quan-

tum as in the previous case. However, if a Job is inter-

rupted during the processing phase of the quantum, the Job

•These classifications correspond to the column designations
of Table 2-1.

40

is later restarted from the point of interruption as In the

preemptive-resume case. This particular discipline would

appear to be a logical choice for actual real-time systems

employing; quantum controlled service disciplines within each

priority group.

Schrage (71) presents a model which is similar to

Adiri's except that the service discipline within each pri-

ority group is of the FCFS type. Schrage assumes that each

Job is partitioned into a set of non-preemptive, preemptive-

resume and preemptive-repeat Intervals. A higher priority

Job arriving during a non-preemptive interval must wait

until the end of that interval before gaining control of

the CPU which is finally relinquished on a preemptive-resume

basis. During preemptive-repeat intervals, higher priority

Jobs immediately gain control of the CPU, and the Job which

was preempted is forced to begin again from the start of

the preemptive-repeat interval. This corresponds to Adlri's

second discipline. Finally, during a preemptive-resume

Interval, preemption occurs in the normal preemptive-resume

sense.

Schrage also treats the possibility of overhead during

each preemption. His model is thus capable of representing

actual systems with a high degree of precision. Unfortu-

nately, examples including non-zero preemptive overhead

prove difficult to treat analytically and are only discussed

in numerical terms.

i+1

Since the primary reason for implementing conventional

priority service disciplines is to provide higher priority

jobs with preferential service, most analyses are concerned

with obtaining waiting times for Jobs in each priority group.

In general, preemptive disciplines favor high priority Jobs

more than non-preemptive disciplines, but the optimal amount

of preemption to permit is an open question, especially in

cases where preemption introduces overhead. Schrage (71)

has obtained some preliminary results along these lines,

but the potential for additional work in this area is great.

While not directly related to the primary concerns of

this section, it is interesting to note that priority disci-

plines can be used to analyze limiting aspects of the ration-

ale which underlies the quantum controlled service disci-

plines discussed in the preceding section. Recall that the

primary purpose of quantum controlled service disciplines

is to provide short Jobs with preferential service. The

problem Is that Job length is not assumed to be specified

at the time a Job enters the system. However, if such in-

formation were available, it would be a simple matter to

define a service discipline which, at any point in time,

always provided service to the shortest Job present.

Such a discipline can be considered to be a conventional

preemptive-resume priority discipline where the priority

of an entering Job is given by the total processing time of

that Job, shorter Jobs having higher priority. If the

42

arrival process is Poisson with mean rate u and the service

time distribution has density function g(t), then there will

be a continuum of priority groups corresponding to all the

positive real numbers. The arrival process for all the

priority groups between r and r1 will be Poisson with mean

rate V u.g(t) dt, and of course all programs arriving at

priority group r will have execution time equal to r. This

particular discipline is closely related to the disciplines

studied by Fhipps (65) and by Schrage and Miller (72).

<*3

ROTATING STORAGE SERVICE DISCIPLINES

A great many computer systems utilize rotating disks or

drums as auxiliary storage devices. For purposes of this

discussion a drum will be defined as any rotating storage

device with fixed read/write heads while a disk will be de-

fined as any rotating storage device with movable read/write

head. Note that under these conventions, devices commonly

known as fixed-head or head-per-track disks are classified

as drums.

When analyzing the performance of disks and drums, it is

natural to think in terms of a queueing process in which In-

coming read and write requests represent customers, the disk

or drum represents the server, and the amount of time neces-

sary to complete a read or write request represents the

service time. The service time in drum systems is the sum

of two components, the rotational delay associated with

bringing the proper drum sector to the read/write heads plus

the actual time required to make the transfer. With disks

the service time is the sum of these two components plus the

time necessary to move the read/write heads into proper

position (i.e., the seek time). Since service times are

slightly simpler In the case of drums, these devices will be

considered first.

From an analysis standpoint, the most interesting aspect

of drum systems is the order in which transfer requests are

44

serviced. Note that the FCFS discipline is highly ineffi-

cient since the time spent waiting for a particular sector

to rotate into position under the drum heads could be better

spent transferring data to or from the sectors passing under

the heads during the waiting period. A more efficient disci-

pline can thus be constructed by sorting all requests accord-

ing to the drum locations they reference and then always

servicing the request which the heads will reach next. This

discipline, which Denning (28) designates as shortest access

time first (SATF), has been studied by Welngarten (84),

Denning (28), Coffman (21), and Abate and Dubner (1).

The first three authors consider the case in which

transfer requests always reference data blocks of fixed

length. Denning is primarily concerned with estimating

average service time as a function of the number of requests

waiting in the queue. Welngarten and Coffman hypothesize

Polsson arrivals and then evaluate system performance as a

function of the mean arrival rate, with Welngarten1s solu-

tion serving as an upper bound to the more exact solution

obtained by Coffman. Abate and Dubner, who deal with the

case of variable block size, present only approximate re-

sults for this more difficult problem.

Since disks are also rotating devices, they too may

employ SATF service disciplines. That is, after the heads

•Welngarten (84), for entirely frivolous reasons, refers to
this service discipline as the Eschenbach scheme in memory of
the Bavarian poet Wolfram von Eschenbach (1170-1220). The
term has gained little currency.

45

have been positioned in a particular location (I.e., on a

particular cylinder), the SATF discipline can be used to

sequence through all the transfer requests which reference

that cylinder. Welngarten (85) has analyzed the effect

that such a discipline can be expected to have on system

performance, "-Tost other investigators have simply assumed

a FCFS discipline within each cylinder, arguing that since

the number of cylinders per disk is large - typically on

the order of 100 or 200 - it is unlikely that there will

be a significant number of requests queued for a particular

cylinder at any given time unless disk use is extremely

heavy. These investigators thus concentrate on other aspects

of disk behavior in their models.

One frequently studied problem concerns the scheduling

of transfer requests in a way that reduces disk head move-

ment. Again, the simplest policy is to service all requests

on a FCFS basis with no consideration of the resulting head

movement. A second policy, termed shortest seek time first

(SSTF) by Denning (28), corresponds to the SATF policy in

that the heads are moved as little as possible on each seek.

This is essentially a step-by-step or local minimization

process. Frank (39) considers the global minimization problem

of finding the seek pattern which minimizes the total amount

of seek time necessary to service all requests present in

the disk queue at a given time.

During periods of heavy load both minimization policies

^6

have the potential disadvantage of creating excessively long

delays for certain requests. This is because minimizing

head movement tends to keep the heads in a particular region

for a long period of time. Newly arriving requests directed

towards this region will receive good service since they

will require comparatively short seeks. However, requests

directed towards more distant regions will continue to wait

since it would be sub-optimal to move the heads a large dis-

tance to serve these requests and then to move the heads all

the way back to serve the newly arrived requests.

To avoid the possibility of these excessive delays,

Denning (28) has proposed a head movement policy called SCAN

in which the heads continually sweep back and forth across

the disk, servicing requests for each cylinder they pass but

never changing direction until the end of the sweep. Denning

(28) compares this policy with FCFS and SSTF and concludes

that SCAN is the most desirable even though SSTF is more

efficient. Weingarten (85) t Sharma (74), and Frank (39)

have also chosen versions of SCAN for their main analyses.

Another way of reducing seek time on disks is to organ-

ize the data so that the most frequently referenced records

are on the middle cylinders. Thus, the heads will never

have to move more than half the full seek distance to reach

these records. The possible effects of such a policy on

performance are considered by Frank (39) and by Abate, Dub-

ner and tfeinberg (2). Sharma (74) also discusses the

47

problems associated with allocation of data on disks, con-

centrating on situations xrtiere a single record may be quite

large.

An entirely different analysis problem is associated

with disk systems which contain a number of Independently

positionable sets of heads. Usually, each set of heads

serves a different disk drive, with a number of drives

connected to a single channel capable of transferring data

to or from only one drive at a time. Thus, seek operations

can be carried out in parallel while transfers must be

processed serially. The performance of systems of this

type has been studied by Fife and Smith (36), Seaman, Lind

and Wilson (73), and Abate, Dubner and Weinberg (2).

48

CAPACITY PROBLEMS

The primary emphasis of the preceding three sections

has been on the determination of response times and waiting

times in various queuelng situations. In addition to these

time oriented problems, queuelng models can also be used to

treat a number of space oriented problems related to such

Issues as the amount of storage required by waiting jobs,

the time between queue overflow in finite capacity systems,

and the allocation of queue space in finite capacity systems

with priority or multiple source inputs. These questions,

which will be grouped together under the heading of "Capacity

Problems", have been studied in computer oriented contexts

by Boudreau and Kac (9), Harrison (^5), Weingarten (83),

Chang and Wong (16), Chang (13), and Bowdon (10).

Several of these papers treat systems in which arrivals

occur in groups or batches. In such systems a random vari-

able is associated with each arrival to specify the number

of customers who have Just arrived. Inter-arrival intervals

are determined by the arrival process as in ordinary queuelng

systems. Thus ordinary queuelng systems can be regarded as

special cases of batch arrival systems in which the number

of customers per arrival is always equal to one.

A very early example of a batch arrival model is pre-

sented by Boudreau and Kac (9)• This model consists of an

input generator which presents a processing unit with a set

^9

of transactions to process once every n seconds. The number

of transactions presented is an Integer valued random vari-

able with a positive probability of being equal to zero, and

the amount of time required to process an individual trans-

action is equal to 2n (i.e., twice the input generation

period). Under these assumptions Boudreau and Kac calculate

the distribution of the number of transactions in the system

at equilibrium using a Markov chain approach. They also

calculate the average time between queue overflow in cases

where only a finite amount of storage is available.

Weingarten (83) presents a model of a message switching

computer which also includes batch arrivals. In this model

there are n input lines all sending messages to a single

processor. The function of the processor is to simply re-

transmit these messages on a character by character basis.

The amount of time required to re-transmit a single character

is assumed to be a constant, and so the amount of time re-

quired to re-transmlt a message is proportional to the number

of characters in the message.

Each input line is assumed to generate messages accord-

ing to a Poisson process, and the amount of time required to

re-transmit each message is assumed to be an exponentially

distributed random variable. Weingarten then considers the

queueing system in which characters correspond to customers,

arrivals occur in batches of exponential size, and the ser-

vice time per customer is constant. Note that this model

50

requires a slight modification of the notion of batch ar-

rivals since the number of customers per batch is no longer

necessarily integral.

The advantage of Weingarten's model is that the number

of characters in the system at any time is simply equal to

the waiting time for an arriving message multiplied by the

number of characters which can be transmitted per unit time,

The waiting time for an arriving message can then be calcu-

lated for the simpler case of Poisson arrivals and exponen-

tial service times. Weingarten goes on to calculate the

average time between queue overflow in cases where only a

finite amount of storage is available. Since this problem

is more difficult than the corresponding one considered by

Boudreau and Kac, a number of simplifications have to be

made and only approximate results are obtained.

Harrison (*+5) considers a message switching computer

similar to the one analyzed by Weingarten, the difference

being that Harrison defines capacity in terms of stored

messages rather than stored characters. Aside from this,

Harrison's model closely resembles Weingarten's in that a

number of input lines send messages to a single processor

for re-transmission, each input line functions as a Folsson

source, and message re-transmission times are exponentially

distributed. Harrison compares the performance of systems

having a dedicated fixed buffer for each line with the per-

formance of systems having a single shared buffer serving

51

all lines. Needless to say, the latter arrangement proves

more efficient. However, overhead factors associated with

implementation are not taken into account.

In the batch arrival models presented by Boudreau and

Kac and by Weingarten, the service time for each customer

is defined as a constant. It is also possible to construct

batch arrival models in which the service time for each

customer is a random variable. Delbrouck (27) presents a

model of this type in which service time is a complex random

function including both initial set-up time and processing

time. Delbrouck's model is used to analyze certain problems

related to the polling of input lines in computer systems.

Since the model is not primarily concerned with capacity

problems, it will not be discussed further in this section.

Chang and Wong (16, p. 587) present a slightly different

approach to the problem of queue capacity. This approach,

which is discussed more thoroughly in a later paper by Chang

(13, p. 122), is to assume that the amount of space required

to store each Job is specified by a random variable with

generating function F(z). Then, if the generating function

for the number of jobs in the queue is given by U(z), the

total storage requirement for all jobs in the queue will

have generating function U(F(z)). This follows directly

from the discussion of compound generating functions pre-

sented by Feller (32, p. 268). The advantage of this ap-

proach is that U(z) can often be determined using standard

52

procedures or well known formulas. Then, once F(z) is speci-

fied, the generating function for the total storage required

by the Jobs in the queue can be immediately obtained.

Bowdon (10) examines the problem of managing finite

capacity queues in systems which incorporate conventional

priority service disciplines. The specific model Bowdon

considers consists of R priority classes being served on a

non-preemptive basis by a single service facility composed

of K identical servers. Arrivals to each priority class

are generated by a Poisson process, and all Jobs have expo-

nentially distributed service times with the same mean.

Bowdon adds to this rather familiar system the addi-

tional restriction that queue length may not exceed M jobs.

If a new Job arrives when the queue length is equal to M,

that Job is permitted to enter the queue only if there is a

Job already waiting in the queue whose priority is lower

them that of the newly arriving Job. In such cases the

newly arriving Job displaces the lower priority Job and the

latter is simply considered lost. Likewise, Jobs which

arrive at a time when the queue length is equal to M and

which find no Jobs of lower priority already waiting in the

queue are also lost. Bowdon then calculates the average

number of Jobs of each priority class in the queue, the

average waiting time for Jobs of each priority class, and

the probability that a Job of a particular priority class

will not be displaced by a higher priority Job while it is

waiting.

53

NETWORK MODELS

All the examples discussed thus far have been concerned

with the analysis of individual processing elements such as

CPU's, disks or drums. In actual computer systems these

processing elements interact with each other since the com-

pletion of a CPU processing request is usually followed by

the initiation of an I/O processing request and vice versa.

Queuelng networks provide a natural mathematical tool for

analyzing situations of this type, and so it is not sur-

prising that network models have been applied to a number

of problems in computer systems analysis.

As indicated in Chapter 3. a great deal of effort has

been devoted to obtaining closed form expressions for the

equilibrium distributions of various queuelng networks.

These distributions may also be obtained numerically using

a fairly simple iterative technique once the network param-

eters are specified. A computer program based on this

iterative technique has been developed at the University of

Michigan and is described by Wallace and Rosenberg (81).

This program has been applied to a number of problems in

computer systems analysis as indicated by the work of Fife

and Rosenberg (35), Smith (76), (77), and Wallace and Mason

(80).

Fife and Rosenberg consider a situation in which pro-

grams arrive at the system, are loaded into core through a

5^

single I/O channel, execute for a certain period of time,

and then leave. The loading of one program may proceed in

parallel with the execution of another so long as there is

enough room in core to load the new program. To simplify

matters, it is assumed that all programs are approximately

the same size and that the capacity of core is five programs

Arrivals to the system are assumed to form a Poisson

process, and both program loading and execution times are

assumed to be exponentially distributed. In this model,

program execution time includes output transmission time as

well as CPU processing time. Since output transmission

occurs at teletype speed and can be performed in parallel

on a multiplexed basis, and since CPU processing time is

quite small in comparison to output transmission time, it

Is approximately true that program execution proceeds In

parallel for all programs In core. Note that this is not

identical to the processor sharing assumption discussed

previously since parallel operation does not result in a

proportional decrease in the execution rate of each job.

Fife and Rosenberg use this model to explore the effect

on system performance of the program loading time to program

execution time ratio. Since the model itself can be criti-

cized on a number of grounds, especially with the advantage

of seven years' hindsight, particular results will not be

discussed in detail. The real significance of this work Is

that it demonstrated, at a relatively early date, the ap-

55

plicability of numerically evaluated queuelng network models

to problems in computer systems analysis.

Smith (76) also appears to be more Interested In demon-

strating the applicability of the method than In attacking

a particular problem. Smith's paper actually presents two

different models: a highly complex and realistic one which

could in principle be analyzed using the queuelng network

approach, and then a somewhat simplified but still realistic

model which is analyzed numerically. The second model con-

sists of a CPU, a disk storage device, and a finite number

of interactive user terminals. Programs are loaded from

the disk and then request a certain amount of CPU processing.

Each time a program completes a CPU request, one of three

alternatives is selected: with probability q, a request is

made for user terminal input; with probability p, a request

is made to load an overlay segment from the disk; with

probability r = 1-p-q, the program terminates and a request

is made to load the next program from disk. The values of

p, q and r are constant and thus do not depend on the number

of CPU requests a program has previously made.

Since overlay and new program loading requests both

utilize the same I/O device and channel, it is necessary to

specify the order in which these requests are served. Smith

evaluates two different service disciplines, non-preemptive

priority with program loading requests favored and preemp-

tive-repeat priority with overlay requests favored. Pre-

56

emption is of interest in the second case because it is

assumed that program loading requires an average of two

seconds while segment overlay requires an average of only-

ISO milliseconds.

As an additional point of interest, Smith Introduces

two possible distributions for program loading time, expo-

nential and second order Erlang. This illustrates the point

that the servers in numerically evaluated queueing networks

need not all be exponential. In fact, any distribution

whose Laplace transform is equal to the quotient of two

polynomials may be used. Such non-exponential servers are

constructed using Erlang*s method of stages as described by

Wallace and Rosenberg (81). Cox and Smith (26, pp. 110-117)

present a more detailed discussion of this method.

Smith's paper thus Introduces three important aspects

of queueing network models which do not appear in the earlier

work of Fife and Rosenberg. These are the use of non-expo-

nential servers, flexibility in service disciplines, and the

ability of a customer leaving one server to select the next

server according to a fixed set of probabilities.

In a subsequent paper. Smith (77) introduces still

another aspect of queueing network models, namely the pos-

sibility of having service time depend on queue length.

This is useful when modeling drum behavior since, assuming

the drum discipline Is SATF, the mean time between transfers

- and hence the mean service time - will decrease as the

57

length of the drum queue Increases. In addition to an SATF

drum, Smith's model contains a CPU and a finite capacity

paged core memory. Programs execute on the CPU until they

generate a page fault, then request a page transfer from

the drum, then execute until the next page fault, and so

on until they terminate.

Smith explicitly represents the fact that the amount

of time a program executes between page faults depends on

the number of pages the program already has in core. This

is done by assuming that each time a program requests CPU

service, the amount of service provided is an exponentially

distributed random variable whose mean is an empirically

determined function of the number of pages the program has

In core. Smith uses the same approach in his drum model,

letting the drum service time be an exponentially distri-

buted random variable whose mean is a function of the length

of the drum queue.

Smith then examines system performance under a variety

of Job mixes, multiprogramming allocation policies, and drum

speeds, reaching the conclusion that demand paging in systems

with a small amount of main memory and a conventional speed

drum results in excessive page traffic and low CPU utiliza-

tion. In addition to introducing the notion of state depen-

dent service times, this model is noteworthy for its repre-

sentational fidelity and for the accuracy of lt» predictions.

Wallace and Mason (80) analyze a paging system that is

58

quite similar to Smith's, the primary difference being that

Jobs are initiated by the loading of an entire block of

pages rather than by the loading of a single page. The

initial block of pages is not intended to represent a pre-

paglng operation, but instead represents an initial burst

of page demands generated during the first millisecond or

so of CPU execution. Since the CPU execution time is negli-

gible, this burst of individual requests is combined into

the initial block to simplify the model.

After the initial block of pages has been loaded, pro-

grams are assumed to attain a kind of equilibrium in which

the Interval between page faults is no longer sensitive to

the total number of pages In core. This represents a simpli-

fication of Smith's earlier model. In addition, drum service

times are assumed to be insensitive to the length of the

drum queue, thus further simplifying Smith's model. Both

drum service times and CPU service times (i.e., intervals

between page faults) are exponentially distributed.

To complete their model, Wallace and Mason assume that

each time a program completes a CPU service request, the

decision as to whether a page fault is to be generated or

the program is to be terminated is determined by an indepen-

dent Bernoulli trial. Thus, programs enter the system with

an initial block of pages, then alternate between CPU pro-

cessing and I/O processing for a period of time, and then

finally leave.

59

In this model the size of memory is proportional to

the maximum number of programs which may be either queued

for or receiving CPU or I/O processing. This number is

varied to determine its effect on system performance. It

is of interest to note that for a wide range of parameters

Wallace and Mason find that there is comparatively little

gain in system performance after memory size goes beyond

eight programs.

Klelnrock (52) presents a network model which is not

based on the numeric approach of the four preceding papers

but is instead based on an analytic closed form solution

obtained by Koenigsberg (58). Klelnrock first considers a

system composed of two processors, Processor 1 and Processor

2. Jobs entering the system are first served by Processor 1,

then held in an inter-processor buffer, then served by

Processor 2, and then ejected from the system. It is assumed

that the inter-processor buffer has a maximum capacity of

N Jobs.

When the inter-processor buffer fills up. Processor 1

is forced to stop operating and system performance suffers.

Since the probability of the buffer filling up depends on N

and on the ratio of the service times of the two processors,

Kleinrock systematically varies these parameters and calcu-

lates the effect on system performance. It should be noted

that service times are assumed to be exponential in all

cases.

60

Kleinrock then generalizes the problem by considering

the case of M processors with jobs proceeding sequentially

from Processor 1 to Processor M and then leaving the system.

Again, each lnter-processor buffer Is assumed to have a

capacity of N jobs. Only approximate results are obtained

for this more difficult case.

Gaver (40) presents an analytic solution for a rather

different network model. Gaver's model consists of a CPU,

a fixed number of Identical I/O processors, and a fixed

number of programs. Each time a program completes a CPU

processing request. It generates an I/O processing request

and vice versa. All I/O processing requests are exponentially

distributed with the same mean, and there Is no queuelng for

I/O requests unless the number of programs currently re-

questing I/O exceeds the number of available I/O processors.

In particular. If the number of programs In the system Is

less than or equal to the number of I/O processors In the

system, queuelng for I/O never occurs.

Gaver proceeds to calculate CPU utilization as a func-

tion of the number of programs in the system. The unique

significance of this work is that Gaver is able to carry out

this calculation without explicitly specifying the CPU

service time distribution. That is, the CPU service time

distribution appears as a parameter in the final expression

for CPU utilization. It is thus possible to ev^iluate the

effects of different service time distributions in an effi-

61

clent manner. As an application, Gaver shows the extent to

which CFU utilization is reduced as the variance of the

service time increases in cases where the mean service time

is held constant.

It is worthwhile to point out the correspondence between

Gaver's model and the finite source time-sharing models dis-

cussed earlier. As long as the number of I/O processors is

equal to the number of circulating programs, Gaver's model

corresponds precisely to a finite source time-sharing model

with exponential "think times", an FCFS service discipline,

and general service times.

The special advantages of queueing network models in

computer systems analysis should by now be apparent. Such

models are well suited for representing concurrent operation

of a number of processing units, and the size of main memory

is often representable as the number of circulating customers

(I.e., programs) in either some part of or all of the net-

work. In addition, the opportunity exists for realistically

representing program behavior as an alternating sequence of

CPU and I/O processing requests.

A number of recently developed network models are dis-

cussed in subsequent chapters of this thesis. These models

include the work of Baskett (8), Arora and Gallo (7),

Moore (62) and Tanaka (79). Baskett's model is discussed on

pages 189-192 of Chapter 7 while the other three models are

discussed at the beginning of Chapter 8.

62

CHAPTER 3: SURVEY OF QUEUEING NETWORK RESEARCH

EARLY DEVELOPMENTS

Output Distributions

A queuelng network Is a collection of service facilities

arranged In such a way that customers must proceed from one

to another In order to fulfill their service requirements.

The essential feature of such systems Is that the output of

one service facility may make up part or all of the Input to

another service facility. Thus some of the early research

In this area was devoted to determining the distribution of

the output of a single service facility.

Burke (11) studied the case of a single service facility

composed of an arbitrary number of parallel exponential

servers. Under the assumption of Polsson arrivals. Burke

proved that the steady state departure process Is of the same

form as the arrival process (I.e., Folsson). He also showed

that the departure process Is Independent of the queue size

left by a departing customer. Reich (67) showed Burke's

first result Is not true In general by constructing a spe-

cific example In which the arrival and departure processes

differ at equilibrium. Finch (38) examined the generality

of Burke's second result and was able to show the the depar-

ture process Is Independent of the queue size left by a

departing customer If and only If service times are exponen-

tial and Infinite length queues are permitted.

63

With the work of Reich and Finch posing potential

complications to any general analysis, most studies of

queuelng networks have been restricted to the case in which

individual service times are exponential and arrivals to

the network, if any, are Poisson. In this case the entire

system can be treated as a continuous time Markov process

and the steady state distribution may be obtained by solving

the appropriate set of linear equations. The remainder of

this Chapter will be devoted to examining solutions obtained

by this method.

Analysis of Specific Network Types

At this point it is useful to Introduce a schematic

notation for representing queuelng networks. Let empty

circles denote service facilities having exponential service

times, let rectangles denote the location of queues, and let

the flow of customers through the network be indicated by

arrows. Thus Figure 3-1 is intended to represent a network

made up of two queues in series.

yo *CZZK>

Figure 3-1

Two Queues in Series

The arrow entering the network represents customers arriving

according to some stationary Poisson arrival process and the

64

arrow leaving the network at the right represents departing

customers. Unless otherwise specified It will be assumed

that the means of the various arrival and service processes

are arbitrary and that there are no bounds on the maximum

queue lengths. This particular network, consisting of only

two queues, was examined in an early paper by O'Brien (63).

Expanding the notation, let a circle containing the

letter P denote a service facility made up of an arbitrary

number of Identical exponential servers operating in parallel.

That is, if there are p exponential servers in parallel each

having mean rate u, then the service facility provides

service that is exponential with mean rate u-mln(p,k) where

k Is the number of customers present at the facility. Figure

3-2 provides an example of this notation. As in Figure 3-1

no assumption is made about the relative number or rate of

the servers at each facility. Networks of this type with an

arbitrary number of queues were studied by R.R.P. Jackson

(49).

y® *tzz>® *CZZK!^

Figure 3-2

Parallel Servers

Continuing to expand the notation, let a circle with

more than one arrow leaving it indicate customers may leave

that service facility by taking any one of a number of paths.

65

For example, in Figure 3-3 a customer leaving service facility

3 can return to service facilities 1, 2 or 3» or can leave

the network entirely.

^f
1

•>*[K>
2

**!

Figure 3-3

Terminal Feedback

Whenever such branch points appear in a network diagram

it will be assumed that each particular path has associated

with it a fixed probability and that, whenever a customer

leaves the service facility, he selects the next path accord-

ing to these probabilities independently of the choices that

he or other customers may have made in the past. Naturally

the sum of the probabilities associated with the different

paths leaving a single service facility must be equal to one.

Figure 3-4 provides another example of multiple paths

leaving a service facility. For notatlonal simplicity only

a single line is shown leaving each facility and the branch-

ing into separate paths appears further on.

K> K> *-»r TO

Figure 3-4

Internal Feedback

66

Using these notational conventions the general network

model of J.R. Jackson (47) Is Illustrated In Figure 3-5.

There are an arbitrary number of service facilities (three

are shown) , each facility has an arbitrary number of

Identical parallel servers, and a customer may proceed to

any service facility In the network after completing service

at any given facility. In addition, new customers may

enter the system via any queue and may leave the system at

the completion of service at any facility.

foffi M—K^

i 1 w

<v<* czzKg)
>©•

Figure 3-5

Arbitrarily Connected Queuelng Network

Limitations on Network Capacity

In the work of O'Brien, R.R.P. Jackson and J.R. Jackson

presented thus far, no limits are placed on the lengths of

any of the queues appearing In the network diagrams. One

method of Imposing such limits Is to construct a closed net-

67

work having the property that customers can neither enter

nor leave. If such a network Is then Initialized with a

given number of customers, these customers will circulate

through the network Indefinitely so that the number of

customers In the network will not only be bounded but will

In fact be constant.

Koenlgsberg (58) Introduced a closed system of a par-

ticularly simple form which he termed a cyclic queue.

Koenlgsberg's model Is represented In Figure 3-6 for the

case In which there are four service facilities. Actually

Koenlgsberg solved this model for an arbitrary number of

service facilities and an arbitrary number of circulating

customers. It is assumed in Figure 3-6 that each queue in

the network has capacity equal to the total number of cir-

culating customers.

^ K)—*CZZK)—*CZZK>

Figure 3-6

Cyclic Queue

Finch (37) adopted a slightly different approach by

considering situations in which the total number of customers

is bounded by some value but not restricted to always remain

equal to that value. Finch analyzed both the terminal feed-

68

back networks of Figure 3-3 and the internal feedback net-

works of Figure 3-^« In both cases Finch assumed that the

arrival process shut down whenever the total number of cus-

tomers in the network reached some upper bound N. That is,

rather than assuming a stationary arrival process Finch

assumed the arrival process was a function of K, the total

number of customers in the network. For K <N the arrival

process was assumed to be Poisson with constant mean rate,

and for K ^ N the arrival process was assumed to be Folsson

with mean rate zero (I.e., no customers arrive).

69

GENERAL NETWORK MODELS

The Work of J.R. Jackson

In an impressively comprehensive paper J.R. Jackson

(48) combined his earlier work with some ideas from Finch

(37) and then went on to develop a solution technique for

an extremely wide class of queueing networks. Jackson begins

by considering the totally general model of inter-connecting

paths illustrated in Figure 3-5. To this he adds Finch's

notion of allowing the mean arrival rate to be a function of

K, the total number of customers in the system. Working

under the assumption of a non-stationary Polsson arrival

process, Jackson then directs his attention to the case where

the mean arrival rate is an arbitrary function of K. In con-

trast. Finch considers only the case where the mean arrival

rate is given by a simple step function equal to u if K<N

and equal to 0 if K±N.

In the networks considered by Finch customers may only

arrive at a single point as illustrated in Figures 3-3 and

3-4. Jackson on the other hand must contend with the possi-

bility of customers arriving at any point as illustrated

in Figure 3-5. To deal with this situation Jackson first

assumes that the total arrival rate for the system is some

arbitrary function A(K). He then assumes that arriving

customers ent»r the system at service facility n with fixed
N

probability r(0,n) (*>' r(0,n) = 1 where N is the number
n=l

70

of service facilities in the system). Thus the mean arrival

rate to the n— service facility in Jackson's model is

A(K).r(0,n).

Jackson also generalizes the notion of parallel servers

at a service facility to include arbitrary exponential ser-

vice. That is, when k customers are present at service

facility n Jackson assumes only that the service time is

exponentially distributed with mean rate u(n,k). As pre-

viously pointed out, if the n— service facility consists

of p exponential servers in parallel each having mean rate

u , and If there are k customers present at the facility,

then the service time is distributed exponentially with

mean rate u-mln(p.k). Jackson's more general approach is

to simply specify the mean rate by some arbitrary function

u(n,k).

In addition to this synthesis and generalization of

earlier work Jackson also introduces new mechanisms Into

his model which allow him to Include closed networks such

as those considered by Koenigsberg as a special case. The

first mechanism Is termed triggered arrivals. In a system

with triggered arrivals It is assumed that there exists a

positive integer K* which serves as a lower bound on the

total number of customers present. That is, whenever the

total number of customers in the system is equal to K» and

a customer exits, a new customer Is Immediately Injected

Into the system. The probability that this new customer

71

will arrive at service facility n is equal to r(0,n) for

n=l,2,...,N . Clearly, if a triggered arrival system is

constructed so that PUK) • 0 if and only if K * K* then

the resulting system can be interpreted as a closed queueing

network with K* circulating customers. Koenigsberg's model

thus becomes a highly specialized example of such a system.

Another mechanism which Jackson treats in this paper

is known as service deletion. Under this mechanism it is

assumed that associated with each service facility there Is
*

a positive Integer k which acts as an upper bound on the

number of customers that can be present at the facility.

If the number of customers present at service facility n
*

is equal to k and a new cutomer arrives* the customer

currently being served Is immediately ejected and then pro-

ceeds to his next destination according to the same set of

probabilities that govern normal departures. Since service

times are exponentially distributed and thus "memoryless",

it is equivalent to assume in this case that the arriving

customer, rather than the customer being served, is the one

that is ejected from the service facility. Jackson thus

provides one possible mechanism for limiting the size of

queues in a network.

It should be pointed out that Jackson does not present

explicit closed form solutions for the queueing networks he

considers. Instead he presents a solution technique for

solving the large set of homogeneous linear equations asso-

72

elated with the Markov process which characterizes the net-

works. The solution technique, which Is Is more fully ex-

plained In Appendix Bt Involves solving a considerably

smaller set of linear equations and then constructing the

solution to the larger set of equations In a certain well

defined manner. This greatly reduces the effort Involved

In solving specific problems and, In addition, demonstrates

the existence of a number of structural properties which all

solutions must possess. However Jackson's work does not

entirely supersede the explicit closed form solutions ob-

tained by Koenlgsberg, Finch and others.

The Work of W. J. Gordon and G.F. Newell

The work of Gordon and Newell {'41) Illustrates how a

particular subcase of Jackson's work may be profitably ex-

plored. Gordon and Newell consider queuelng networks with

completely general inter-connecting paths as illustrated in

Figure 3-5t except that only closed systems are examined so

there is no possibility of customers either arriving or

departing.

In a sense this model represents a natural generaliza-

tion of closed cyclic networks considered by Koenlgsberg,

whereas Jackson's model C18) represents a generalization of

the open network model (^7) he considered earlier. The

mechanism of triggered arrivals then allows Jackson to in-

clude closed networks such as those of Koenlgsberg as a

73

special case. Despite its elegant generality this treatment

is somewhat cumbersome, and so in practice it is far simpler

to follow the notation and equations of Gordon and Newell

when solving problems which are initially defined in terms

of closed networks. The solution technique presented in

Appendix B closely parallels the derivation which Gordon and

Newell present.

After re-deriving Jackson's equations in a specialized

form Gordon and Newell go on to explore the asymptotic

behavior of closed systems as the number of circulating

customers becomes very large. This aspect of their work is

entirely new and lends further interest to the paper.

In a second paper published the same year Gordon and

Newell (42) consider a network of cyclio queues of the type

illustrated in Figure 3-6 with the additional restriction

that the maximum queue length which can build up at a service

facility is less than the total number of circulating cus-

tomers. When a queue reaches its maximum permissible length,

it is assumed that the service facility which feeds into that

queue becomes blocked or in effect shuts down. In contrast

the service deletion mechanism of Jackson (48) would Imply

in this case that, when a queue reached its maximum length,

customers departing from the service facility which feeds

into that queue would simply bypass it and proceed directly

•Gordon and Newell were unaware of the earlier work of
Jackson (48) as indicated in (43).

74

to the next service facility In the cycle.

The Induced blocking mechanism considered by Gordon and

Newell is thus quite different from the service deletion

mechanism of Jackson. Unfortunately the equilibrium equa-

tions for this problem turn out to be rather complex, and as

a result explicit closed form solutions are obtained only

for the case of a cyclic network of two queues. In addition

the limiting behavior of such systems when the number of

customers is small (I.e., when there is a low probability of

a queue reaching its maximum length) and when the number of

customers is large (i.e., when there is a high probability

of a queue reaching its maximum length) is explored.

The problem of limited size queues with Induced block-

ing also proved difficult to treat in the case of queues in

series as illustrated in Figure 3-1. Hunt (46) considers

such a system but is able to derive solutions only for the

case of two queues with the second having arbitrary finite

capacity, and the case of three queues with the second and

third having a capacity of one. The rather limited success

of these efforts suggests that this Is a difficult problem

to treat in general. However the close parallel between the

induced blocking mechanism and the behavior of computer

systems when memory becomes saturated should provide strong

motivation for additional research in this area.

75

CHAPTER k: INTRODUCTION TO THE
CENTRAL SERVER MODEL

SPECIFICATION OF THE MODEL

Individual Program Behavior

One method of constructing a mathematical model of a

complex physical system Is to first analyze a particular

component of the system in relative isolation and to then

gradually introduce additional detail. In the case of multi-

programming systems it Is convenient to begin this process

by analyzing the behavior of an individual program running

in a slightly simplified multiprogramming environment. It

will be assumed that programs enter this environment by

being loaded Into main memory from a device such as a disk

or card reader. Once loaded, a program presents the CPU

with a sequence of instructions to be executed. Scattered

through this sequence are a number of I/O transfer requests

which, when encountered, cause the CPU to suspend instruction

processing for the duration of the transfer. After a trans-

fer has been completed a new interval of CPU processing

begins, then another interval of I/O processing, and so on

until the CPU eventually encounters a symbolic STOP state-

ment. This terminates the program and causes it to exit

from the system.

Now consider the effect of a multiprogramming environ-

ment on the preceding description of individual program

76

behavior. Since all multiprogramming environments are

designed to maintain a number of programs In the active

state at all times. It Is possible for a program In such

an environment to request service from a processor at a

time when that processor Is already busy serving some

other program. Such overlapping requests for service will

cause queues to build up from time to time at the various

processors In the system.

Taking this additional consideration Into account,

program behavior Is thus characterized by a period of

Initial loading followed by alternating Intervals of CPU

processing and I/O processing with each processing Interval

possibly preceded by a queuelng delay, and eventually a

final period of CPU processing after which the program

exits from the system. This general behavior pattern Is

represented schematically in Figure *J—1 for a system in

which programs are initially loaded from a card reader and

may then carry out I/O processing on a disk, magnetic tape

and data cell. Mote that the behavior of any program in

such a system can be described by a continuous path through

this diagram beginning at the card reader and ending at the

exit arrow. The exact structure of the program behavior

path, as well as the amount of time required to service

each processing request, will vary from program to program

and is left unspecified. The time a program spends waiting

In queues depends not on the program Itself but on the

77

*

possible ^___
wait in /

possib
wait

le
in

.1 nTnv . \

' 'i\

^

le
in 1 HAG \

possib
wait

"V TAPE f~*

_/DATA V.
queue (cpl possible i i

pro
ex
fr

 r

V_ wait; in

t
gram
its
om

~\ CELL r9

/CARD \
READER y4 system

Figure 4-1 Program Behavior

Figure 4-2 Memory Partition Behavior

78

activity of the other programs In the system. This too Is

left unspecified.

The circles labeled DISK, MAG TAPE and DATA CELL In

Figure 4-1 are not Intended to represent Individual devices.

Instead they represent Individual peripheral processors, each

capable of controlling a number of physical devices but each

having the property of being able to carry out only one I/O

transfer at a time. Thus a peripheral processor might corres-

pond to a data channel combined with a device controller

which is connected to several disk or magnetic tape drives.

Note that even though each program normally has its own set

of dedicated tape drives, it is presumed in Figure 4-1 that

there Is only one data channel/controller for all the tape

drives in the system. Hence the magnetic tape processor is

depicted as a shared resource subject to queuelng delays

in the same way that the disk and data cell are.

System Behavior

The model of program behavior represented in Figure 4-1

can be converted to a model of system behavior for an entire

class of multiprogramming systems by making a few relatively

minor alterations. First of all, rather than considering the

processing requests generated by a particular program It is

Instead necessary to consider the processing requests gener-

ated by a particular memory partition in a multiprogramming

system. This change affects the way in whicb program

79

terminations are represented. When a program encounters a

symbolic STOP statement it simply exits from the system as

indioated in Figure fc-1. However, the partition in which

the program resided does not exit but is instead loaded

with the next program awaiting execution. Thus, from the

point of riew of the memory partition, the termination of

one program is followed by the loading of another.

In order to represent this phenomenon let the activ-

ity of a particular memory partition be described by a marker

moving about the diagram in Figure k-2. The location of

the marker will correspond to the state of the program in

the associated partition: either waiting in a queue or re-

ceiving service from a processor. When the CPU encounters

a symbolic STOP statement and the program terminates, assume

that the marker moves out along the NEW PROGRAM path leaving

the CPU. The marker will then immediately return to the

CPU queue, this time representing the first CPU process-

ing request of the next program. Actually the first few

processing requests the marker generates at this point will

not correspond to the next program itself but rather to the

processing aotivity required to load the next program Into

the partition. However, this processing aotivity will be

regarded as a part of the next program for purposes of

this discussion.

The model can now be extended to Include the behavior

of an entire multiprogramming system simply by assuming

80

that each memory partition in the system is represented by

a different marker moving about the diagram in Figure 4-2.

Note that only one marker can occupy a processor at any

time, but any number of markers can occupy the queue assoc-

iated with a given processor. Under these conventions the

movement of markers along the paths of Figure 4-2 can be

seen to correspond in a natural way to the operation of an

actual multiprogramming system.

Multiprogramming systems which can be represented In

this manner must satisfy certain restrictions. First of all,

the number of main memory partitions in the system being

modeled (i.e., the degree of multiprogramming) must be

constant since there is no way of either adding or deleting

markers In Figure 4-2. In addition, an Individual program

cannot undergo concurrent processing on more than one

processor at a time because only one marker is associated

with each program. Finally, the system must be operating

under conditions of full load since it Is assumed that there

is always a new program ready to begin processing when a

currently active program terminates. Note that these

restrictions do not Interfere with the primary objective

of the model which is to represent cases In which a number

of active programs are present in a single system at the

same time. Since this state of affairs is usually regard-

ed as the most significant aspect of any multiprogramming

environment, the three restrictions Just cited do not

81

prevent the model from being of both practical and

theoretical interest.

Behavior Parameters

Figure *J—2 cannot be regarded as a complete description

of a multiprogramming model because it does not specify the

nature of the paths that markers follow as they move about

the diagram or the amount of time that markers spend at each

processor they encounter. These two factors correspond to

the sequence of I/O processing requests generated by a

program and the amount of time necessary to service individ-

ual CPU and I/O processing requests.

There are a number of ways in which the sequence of

I/O requests generated by a program can be specified. For

example, it is possible to observe an actual system over a

period of time, note in detail the path followed by each

program, and then Include all this information In the model.

This representation would be entirely accurate but would

result In an unwieldy model since a vast number of param-

eters would be necessary to permit this Information to be

encoded. It is thus essential to develop a more concise

representation of program behavior, even if this entails

some sacrifice in the fidelity of representation of the

final model.

To see how this might be done imagine that an actual

system is observed for some period of time, but assume that

82

the only Information collected Is the relative frequencies

with which various paths are selected by programs completing

CPU processing requests. A typical set of such data for

the system represented In Figure 4-2 Is presented In Table

4-1.

Path Designation Relative Frequency

NEW PROGRAM path 1 In 20

Path to DISK 9 In 20

Path to MAG TAPE 5 In 20

Path to DATA CELL 2 In 20

Path to CARD READER 3 In 20

Table 4-1

Relative Frequency with which Programs Completing CPU Pro-

cessing Requests Select Various Paths

To a certain extent the program behavior paths which

generated this data can be reconstructed by assuming In

Figure 4-2 that whenever a marker leaves the CPU Its next

path Is determined by probabilities which correspond to the

relative frequencies In Table 4-1. That Is, assume that

each time a marker leaves the CPU the probability of Its

selecting the NEW PROGRAM path Is 1/20, the probability of

Its selecting the path to DISK Is 9/20, and so on. A system

83

operating In this manner clearly will, In the long run,

utilize Its peripheral processors with the same relative

frequency as the observed system. In addition. Individual

program behavior will exhibit considerable variability

since the total number of processing requests per program

and the sequence of processing requests within each program

are both determined by random factors. Thus, even though

the exact details of specific program behavior are lost

under these assumptions, a substantial link with reality Is

maintained. Furthermore the number of parameters necessary

to specify program behavior is significantly reduced since

only the path selection probabilities need be supplied.

Specifying the amount of time a marker spends at each

processor is a more difficult problem. In actual multipro-

gramming systems the amount of service time per processing

request is likely to be a rather complex function which

differs from one processor to another. It is of course

possible to observe an actual system and empirically obtain

the distribution of service times for each processor. These

empirical distributions could then be approximated by con-

tinuous functions and the service time for each processor

could then be specified as a random variable having the

associated continuous distribution function.

There are two major drawbacks to this approach. First

of all, analysis of queueing networks of the type illustrated

in Figure k-2 for arbitrarily distributed service times Is

81+

almost certain to lead to a mathematically intractable

situation. Second, and in some sense equally as important,

a set of continuous distribution functions fitted to some

arbitrary body of data would be an extremely awkward collec-

tion of parameters to incorporate into a model, especially

if the effects of parameter variation were being explored

with the aim of generalizing to other systems. Thus, as in

the case of program behavior paths. It is again necessary

to seek a more concise and mathematically tractable repre-

sentation, even at the expense of sacrificing fidelity of

representation in the final model.

There are two features of the actual service time

distributions which seem especially critical and which will

be incorporated In the model. The first is that each pro-

cessing request directed to a given processor is likely to

require a different amount of time for Its completion. That

is, the service times associated with a given processor are

not all Identical but instead vary from one request to

another. When these variations are averaged together, a

second important feature becomes apparent which is that the

average amount of service time per processing request is not

necessarily the same for each processor in the system.

Assume that the average amount of service time per pro-

ceasing request Is l/uQ for the CPU and 1/u. for the J— PPU.

Prom a mathematical standpoint the simplest way to incor-

porate these parameters into the model, while also including

85

variability In the individual service times of each processor,

is to assume that the service time per processing request for
*

the CPU is an exponentially distributed random variable with

mean 1/u and that the service time per processing request

for the J~ PPU is an exponentially distributed random vari-

able with mean l/u.. Note that it is not being asserted that

these exponential distributions provide an entirely accurate

representation of the actual service time functions, but

only that they Include the most significant aspects of these

functions. The point is that the model should not be Judged

on the goodness-of-fit of the exponential assumptions, but

rather on the validity and utility of the Insights which are

ultimately derived.

Summary Description of the Model

The final model, which is represented schematically in

Figure 4-3, may be described In the conventional terminology

of queueing theory as a closed queueing network of L+l expo-

nential servers and N circulating customers. Customers

leaving the o— (central) server proceed to the y& server

with probability p. (J«0,1,...,L) , and customers leaving

one of the L peripheral servers proceed directly to the

central server with probability one. The parameters of the

•Appendix A contains a detailed discussion of the most sig-
nificant features of exponentially distributed random vari-
ables.

86

N Circulating Customers

"7N

1 1*r
NEW PBOGHAM

u

Central
Server

u

u

^Ul 1 (u

Peripheral
Servers

Figure 4—3

Central Server Model of Multiprogramming

87

system are:

N - number of circulating customers (i.e., degree of

multiprogramming)

L - number of peripheral servers
Mi

p. - probability that a customer proceeds to the J—

server after leaving the central server (j=0,l,

...»L)

u. - mean rate of the i— server (J*0,1,...,L)
J

1/u is the average time required to complete a

service request on the J^— server, and the proba-

bility that a service request on the J— server

has length * T is

T

5 u, e^i* dt
0 x

For purposes of this discussion the class of queuelng

networks which satisfy the preceding description will be

known as central server networks and the models based on

these networks will be known as central server models. The

o— (central) server in a central server network will be
feh

referred to as the CPU and the J— (peripheral) server in

a central server network will be referred to as the J~ PPU.

88

ELEMENTARY PROPERTIES

Introduction

The primary reason for developing the central server

model of multiprogramming Is to gain some understanding of

the nature of the queueing delays which arise In multipro-

gramming systems. Before analyzing this aspect of the model

certain other properties will be considered which are In a

sense more elementary in that they are Independent of queue-

ing delays and can be derived without considering the steady

state distribution of customers in the network. These prop-

erties, which have to do with the distribution of the number

of processing requests per program and the total processing

time per program, will help to further Introduce the model

and will also be of some practical use later in the analysis.

Table 4-2 (p. 98) provides a convenient summary of the main

results of this section.

Distribution of Processing Requests

To begin the analysis recall that each time a program

completes a CPU processing request the probability that the

NEW PROGRAM path will be selected is p . Since selection of

the NEW PROGRAM path corresponds to termination of a program,

it is relatively simple to obtain the distribution of CPU

processing requests per program.

89

Suppose a program has Just been loaded into main memory.

The probability that the program will make exactly one re-

quest for CPU processing is the probability that It termi-

nates (i.e., selects the NEW PROGRAM path) immediately after

completing its first CPU processing request. According to

the model the probability of this happening is p . Similarly,

a program making exactly two requests for CPU processing

must select a path other than the NEW PROGRAM path after its

first CPU processing request - an event whloh occurs with

probability l-pQ - and then select the NEW PROGRAM path after

its second CPU processing request. Thus the probability of

a program making exactly two CPU processing requests is

In general a program which makes exactly n requests for

CPU processing must select a path other than the NEW PROGRAM

path n-1 consecutive times and then select the NEW PROGRAM

path the n— time. Since each path selection decision is

independent of all other decisions, the probability that
n 1

this event will occur is (1-PQ) P0 • and thus the expected

number of CPU processing requests per program is

ZIn pft (1-Pft)
n"1 - l/po *-l £- o o o

Obtaining the number of PPU processing requests per

program is a bit more complicated. Consider the probability

that a program makes exactly n requests for processing from
fell the J— PPU, and suppose for the moment that the total number

90

of CPU processing requests made by the program is C+l. That

is, after each of the first C requests for CPU service the

program selects a path to a PPU - possibly the J— one -

and after the C+l2- request the program terminates by select-

ing the NEW PROGRAM path. Note that if this program is to
t-Vi

make a total of n requests for service from the J— PPU it

is necessary to have C £ n.

Consider the first C requests for CPU processing. After

n of them the program must select the J— PPU, and after C-n

of them the program must select a PPU other than the J—.

Since the NEW PROGRAM path cannot be selected during this

period, the probability of selecting a PPU other than the

J— is (l-p0-pj and the probability of selecting the J~

PPU remains p.. It then follows that the probability of

making n consecutive requests for service from the J— PPU

followed by C-n consecutive requests for service from a PPU

other than the J— is p. (1-p-p*) " •

Of course there is no reason in this case to require

that the n requests for service from the J— PPU precede the

C-n other requests, and in fact any ordering of these C re-

quests is legitimate as long as exactly n requests for

service from the J— PPU occur. Since the total number of

such orderings is [*jj and the probability of obtaining any

particular ordering is p. (l-P0«-pJ " t the probability

that there will be n requests for the J— PPU somewhere

among the first C requests for PPU processing is

91

J jp, (1-p -p*) • Since It is also being assumed that the

program makes exactly C+l requests for CPU service, It Is

necessary to multiply this expression by p which Is the pro-

bability that the NEW PROGRAM path will be selected after the
st next (i.e., the C+l—) CPU processing request. Thus the pro-

bability that a program makes C+l requests for CPU serrioe
feh

and n requests for service from the J— PPU is

Po(SK<l-Po-p/-n-
To obtain the probability that a program makes exactly

n requests for service from the J^— PPU irrespective of the

number of requests it makes for CPU service, it is necessary

to sum the preceding expression over all values of C for

which n requests for service from the J— PPU are possible

(i.e., for C=n). Thus the probability a program makes n

requests for service from the J— PPU is

^ _ . n
oo

On flKw-v,^ " i&(5&) *-2

•Equation k-2 follows from the observation that
QO

Can

(Cj j0-n , 1/(1.x)n»l

for 0<x<l. This result can be derived by differentiating
both sides of the equation

HxC - l/(l-x)
C=0

n times with respect to x and then dividing through by n!

92

From this expression It Is possible to obtain the expected

number of requests for service from the J— PPU as

'•-o p / p, \n

i= - v*7(v*j) • > A,
Note that the summation in equation k-J begins with n>=0

since it is possible for a program to make no requests for

service from the J— PPU. On the other hand the summation

in equation 4-1 begins with n=l since each program must make

at least one request for CPU processing.

One of the implications of equation 4-3 Is that the

total expected number of PPU processing requests per program

is si P/p0 = ± z: p. - J- d-p0) = — -1 ^
J=l ° ° po J=l J po ° po

This makes sense Intuitively since the total expected number

of CPU processing requests per program is l/pQ and since, in

any program, the number of PPU processing requests is one less

than the number of CPU processing requests.

Distribution of Total Processing Time

Now that the distribution of the number of processing

requests per program has been obtained for each server it

is possible to obtain the distribution of total processing

time per program. Again it is simpler to begin with the CPU

Clearly the probability that the total CPU processing time

per program is less than or equal to t Is the probability

93

that a program requires exactly one CPU processing Interval

times the probability that this Interval Is less than or

equal to t plus the probability that a program requires

exactly two CPU processing Intervals times the probability

that the sum of these two Intervals Is less than or equal to

t and so on. If D (t) Is the probability that the sum of

n CPU processing Intervals Is less than or equal to t and

DT(t) Is the probability that the total CPU processing time

per program Is less than or equal to t, then the preceding

sentence may be expressed more concisely as

D-(t) - II P0(l-P0)
n"1D (t) 4-5 1 n«l ° ° n

Taking the Laplace-StleltJes transform of both sides.

Since the CPU processing Intervals are Independent and

Identically distributed random variables. It follows from

one of the elementary properties of Laplace-StleltJes

transforms that

Ln (s) « (Lo (s))
n

Hence

L^L) -^P0tl-P0
)n"1(LD1

(B,)n

Po \{s)

" 1 - <l-po) L^C)

9^

Since CPU processing intervals are exponentially distributed

with mean l/u

Dl(t) • >o e ° «"

Thus LD (s) -jc e~
ST

)0 c uwl'

,°«> u -st -u t ,. o :(e u e o dt » Jo o u +s o
Substituting, u

°o
LD <•> - V8 = Uopo 4-6

T u u p +s
1 - (1-po)u^r? o

As can be readily verified, the inversion of equation 4-6

yields

DT(t) =io Vo e"U°P°X dx

That is, the total amount of CPU processing time per pro-

1 gram is an exponentially distributed random with mean u p o*o

A similar argument can be used to determine the distri-

bution of the total amount of processing time per program on

the J— PPU. The major difference la that it is now possible

- with probability p /(p +p,) - for a program to make no

requests for processing on the J— PPU during the course of

its execution. Hence the formula corresponding to equation

4-5 for the J— PPU is

D_(t) = -ilfi— + ^-_io_/lZi-T D (t) 4-7

95

Note that when equation k-7 is evaluated at t»0 the result-

ing probability value is PQ/(p +pJ. This is the probability

that the total processing time per program on the J~ PPU is

equal to zero. Hence the probability that the total pro-

cessing time is less than or equal to t always includes the

term P0/(pQ+pJ .

Taking the Laplaoe-StieltJes transform of equation JJ—7

n
CxS

L "(a)
T Vpj n^T Vpj

'1
po+pJ

I^C.)

J^fj.
I -
Vpj -i

Lj, (.)

fell
Since service Intervals on the J» PPU are exponentially

distributed with mean 1/u., it follows that

Dj(t) - JJ Uj e"V dx

and L~ (s) uJ+s

Thus Lj. (s)
UT

VpJ
1 - ^Jll

P0+Pj UJ+S

96

U
JPQ+PQ

S

ujVpos+pJs

po+Pj

" u3po

VPj

Po+pJ

Po+pJ

Inverting,

DT(t)
pJ

Po+Pj

U
JPQ

I
po+Pj

-
U
JPQ

Po+Pj dx
po+Pj

4-8

Put into words, equation ^-8 expresses the fact that the

total processing tine per program on the J— PPU is zero with

probability p /(p +pJ and, with probability Pi/(P0+Pi) t is

exponentially distributed with mean (pQ+P^Au.p). Thus

the expected processing time per program on the J— PPU is

PJ PO
+
PJ

p +p . u .p o ^J J^o Po+Pj

PJ
ujPo

The results derived in this seotion are summarized in

Table Jf-2. There is a sense in which these results should

not be considered as consequences of the central server

model but rather as additional assumptions about program

behavior which are implicit in the model. To elaborate upon

this point, recall that the underlying purpose behind the

central server model is to gain insight Into the nature of

the queueing delays which arise in multiprogramming systems.

97

>

+

P
t) (3 •d
Ol ^ -7
S

P. +
p

£1 o "••? ° p. p.
i *• L IP. *-> +
i •" 3 O
| 0) 1 P. o

•c 1 ""» •»-»| O 0 «•"> p.

o

OP. p. IP. P. «•-»
PT|+ o| «-» 3 ° P. P.

IP. **l+ fa
i p.

H O

HP?
p.i+ ° IP. •

P
•b

P
o

p.
& ri o
Ut 1 3 o B 1

0
0 O o
X P. A ° O P.
p 1 IP. P. r4 o

tH o 3 u —^ 3
o O
to P. tL^H

H C
P -H

3
p

O Vt o
S3 o p

© 00 U CO P h
« © P

j3 P,E-> Vi 3 jo n
i 1 o <r ill P

i 0 41 p ©
Hh •> E : o a •
p » h P «H CO
•H 0 •
H o a

^ to «H P «-l p h
-d O H n to

•H** ^ <J) © M • © © o
.D fa. DO
a5 U o

•POP, t P o ft
0«i 0«H »H 1 O -H P.

,0 <D U 0) > <C

H © G

5 © >
.' P< w ^

M © ©
ona
fc Mh hem U Qrl P* BQ P. i «• D P.

I
-3-

•s
EH

O

©

£
60
C
•H

(j
©
o
c
o o
n
P

CO
©

©

u
©
Q

98

Instead of applying the model to this problem, the work of

this section has been devoted to studying the behavior of

programs operating in systems which satisfy the basic assump-

tions of the model.

Now, the basic assumptions of the model regarding pro-

gram behavior were assumed to be sufficiently realistic to

permit the model to be of value in exploring the effect of

queueing delays on system performance. However, this does

not imply that these assumptions are sufficiently realistic

to permit the model to be of value in further exploring

program behavior itself. Hence these derived results should

not be Interpreted as intrinsically useful information about

program behavior in actual systems. Instead they should be

regarded as additional constraints on program behavior which

systems represented by the model must to some extent satisfy.

This point is certainly not a major one, but it may help to

clarify the relationship between this section and the remain-

der of the thesis.

99

CHAPTER 5: THE STEADY STATE DISTRIBUTION
AND ITS PROPERTIES

ANALYTIC EXPRESSIONS

Derivation of the Steady State Distribution

Steady state distributions were discussed In general

terms in Chapter 2. Chapter 3 then reviewed a number of

specific queueing networks for which steady state distribu-

tions have been explicitly obtained. Central server networks

were not included in this discussion since the literature

contains no specific references to networks of this type.

However, central server networks fall within the general

class of queueing systems analyzed by Jackson (48) and

Gordon and Newell (^1), and hence it is possible to use the
*

solution technique developed by these authors to obtain

the steady state distribution for this particular network

type.

To apply the solution technique outlined in Appendix B

to a specific queueing network It is first necessary to

specify the matrix P • (Pji) where p. . is the probability

that a customer leaving the 1— server will proceed to the

J— server. For central server networks the matrix P Is

defined as follows:

•This technique is reviewed in Appendix B,

100

p =

1

1

Pi
0

0

P2
0

0

0

0 5-1

0

The next step Is to determine the solution of the

equation y = y-P (I.e., equation B-7 of Appendix B).

Given a matrix of the form specified In equation 5-1. It Is

easily verified that the vector y = (y^.p.. y^.Poy^. • • • .PT JO — O X O C, O i_iO

satisfies the equation y • y-P for any value of y . In

particular the vector y » (u .p.,u tp«u ,. .. tpTu) satis-

fles this equation.

Next let P(n .n..,... ,nT) denote the steady state prob-
O A Li

ability that there are n. customers at the J— server In

a central server network. It then follows Immediately from

equation B-8 that

L

'(n0«ni n
L
} - am "J£ (y/Vnj

1 L 5-2

where G(N) Is a normalizing constant. Note that the multi-

plicative Index j can begin at 1 since y /u = u /u =1.
o o o o

The normalizing constant G(N) Is selected so that the

sum of all the P(n ,n.,...,n,) will be equal to one. Since

101

L
any value of P(nn,n1,... ,nT) for which > n. = N repre-

aents a possible state of the system* it follows that

'juo'uJ' G(N) « > 77 (p,u>,)nj

T^n.-N
J=0 J

> ft (f)V«j'nl 5-3

> n,*N

Note that neither n nor p appears on the right hand

sides of equations 5-2 and 5-3 although it is of course
L L

understood that n » N-> n. and p • 1 - > p. .
° I^T J ° >r J

Equations 5-2 and 5-3 are also valid for central server

networks in which the NEW PROGRAM loop is missing since

such networks simply correspond to the case in which
L

p = 0 and 5_ p. » 1.
° j»l J

Part of the value of central server networks is the

extreme simplicity with which the solution to the equation

y » y-P can be expressed. This simplicity makes it

possible to analyze the steady state distribution in detail

and to derive a number of related properties which are

valid for all central server networks but which are not

necessarily valid for the more general networks studied

by Jackson and by Gordon and Newell. The next few sections

102

deal with some of these properties.

Processor Utilization

Let A, denote the steady state probability that the

J— processor is active (I.e., not Idle). Since the J—

processor Is active If and only if n, ^ 1

A. - > P(n/N,n1, ... ,nT) J n =1 ° X L

In particular,

Art = > P(n/N,n1 n-) 0 n>l ° * ** o

Since n ^ 1 implies > n. 4 N-l 0 1=1 1

Ao ^> P(no,nlt...,nL)

>n>N-l
i«l X

> skr jr^yy"!
> n>N-l
1=1 x

G(N) 5^

103

For J-1,2,...tL

A. = J>_ P(n ,n1,. .. ,nT) J n.=l ° 1 L

> Gnrr1T^iVui^
L
> n,=N & n,=l
1=1 x J

Factoring out the quantity p.u /u, which appears in each

term of the sum as a result of the fact that n,=l ,

*j - GOT ^7 > jr (vA'"1

1=1 x

, l^SL G(N-l)
U, G(N)

p.u
A. Uj o

Thus

VoPj " AJuj 5"5

Conservation Laws

Equation 5-5 has an interesting intuitive interpreta-

tion. Suppose that a central server network in equilibrium

is observed for some interval of time of length T. Then

the expected amount of time that the central server is

104

aotive during this interval Is AT. Since the average

amount of time required to process a customer through the

central server is 1/u , the expected number of customers

processed by the central server during the interval is

A T/(l/u) = A Tu . Next note that each customer processed o o o o

by the central server has probability p, of being channeled

to the J— peripheral server. Thus the expected number of

customers channeled to the J— peripheral server during the

Interval is A Tu p.. o o^j

On the other hand the expected amount of time that

the J— peripheral server is active during the Interval la

A.T, and so the expected number of customers processed by

that server during the interval is A,T/(l/uJ • A.Tu.. If

T is large and the system is in equilibrium, then conserva-

tion of flow considerations would indloate that the number

of customers channeled to the J— peripheral server should

equal the number of customers processed by that server. In

other words A Tu p, should equal A/Tu. . This is equiva-

lent to stating that A up • A.u.. Since equation 5-5

may be obtained in this manner using conservation of flow

considerations, this equation will be referred to as the

Conservation Law for the remainder of this discussion.

In order to discuss one of the applications of the

Conservation Law it is necessary to introduce the notion of

the relative saturation of a server in a central server net-

work. Essentially, relative saturation is the ratio between

105

the relative load on the server and the server's processing

speed. If the relative load on the central server is defined

as 1, then the relative load on the j— peripheral server

will be p. since, over a long period of time, the ratio of

the number of customers processed by the central server to

the number of customers processed by the j— peripheral

server will approach 1/p*. Hence the relative saturation

of the J— peripheral server will be defined as p./u. and

the relative saturation of the central server will be de-

fined as 1/u . o

Next note that the Conservation Law can be reformulated

as follows:

_^o. *1 A2 ^L 6
l/uQ " Pl/ux p2/u2 pL/uL

It Is immediately obvious from equation 5-6 that the most

highly saturated server is always the most highly utilized

server and that equally saturated servers will be equally

utilized. In fact utilization is directly proportional

to relative saturation. It is also true that the most

highly saturated - and highly utilized - server has the

largest expected queue, but the proof of this fact will be

deferred until later.

Before discussing the issue of expected queue lengths

it is useful to introduce a powerful generalization of the

Conservation Law. Begin by defining A. as the steady state

probability that there are k or more customers present at

106

the y& server. Note that A° » 1 and, according to the

earlier definition of A*. A. « A. .

Now, AQ = \ P(nQlnlt...,nL)
n =k o

Since n 4 k Is equivalent to > n. * N-k ,
° 1=1 1

> GTNT]X(PlVUl)ni

1»1
n^N-k

G(N-k)
G(N) 5-7

For J-1,2,...,L

A 5=2 P*no,nl nL*

1-1
njAN * n.*k

> GHJT Jt '"iW"1

1=1
n^N & n.*k

Faotoring out the quantity (P«U0/
UJ which appears In each

term of the sum as a result of the fact that n. * k ,

107

A" = 1
GTNT u.

It

T J[ip,»A»n'

1=1
n^N-k

p,u r°
u

J J
G(N)

p*u ro
u 5-8

Equation 5-8 may be thought of as a generalization of

equation 5-5 since the latter can be derived from the former

by setting k»l. For this reason equation 5-8 will be re-

ferred to as the Generalized Conservation Law. Note that

once G(0)(G(1),...,G(L) are known, equations 5-7 and 5-8

k k can be used to determine all the A, . The A, can then be

used to determine the marginal distribution of customers

at each server since the probability that there are exactly

th k k+1 k customers at the J-*1- server is equal to A, - A. .

Queue Lengths

Define Q, to be the expected number of customers

present at the J— server at equilibrium. Q, may be in-

terpreted as the expected length of the queue at the J—

server as long as queue length is understood to Include

the customer currently being served. Since A^ - A^"*"* is

108

the steady state probability that there are exactly k cus-

toraers at the J— server for k»0,l,...,N-1 and A is

the steady state probability that there are exactly N cus-

tomers at the J— server, it follows that

Q, - ZZ k<A1 ' A^+1) + N-AN. 5-9
J k»0 J J J

ss
N

k«0
k'AJ -

<£- k IZ (M)A*
k=l J

=
N

k»l *>

For ;)=0,

So «=
N

k«=l t
-

N

k*l W
For J«*1,2,...,L the Generalized Conservation Law implies

^_ (p.u/u/ G(N-k)
£-1 J ° J G(N)

Hence, assuming G(0),G(1),...,G(N) have been determined,

the expected queue length for each processor can be obtained

109

by evaluating the polynomial

GTNT «(*> - ±. ** ty& 5-10
k=l

at the appropriate value of x. That Is, Q = q(l) and

Q, * <l(Piuo/ui) for >1»2,...,L .

Since all the coefficients In the polynomial q(x) are

positive,

A1"° %> ^ ^ *> PJU°/UJ

**q(l) > q(pJuo/uJ) <=* Qo> Qj

Thus the most highly saturated - and most highly utilized -

server has the largest expected queue, and equally saturated

servers have equal expected queue lengths.

The polynomial expression for Q. presented In equation

5-10 is quite useful for computational purposes and also

makes the association between relative saturation and expected

queue length Immediately apparent. However It Is necessary

to develop an alternative representation for Q. In order

to expedite some of the computations In Chapter 6. Note

first that for 14 JU ,

110

Ak
$-A3+1 • > F<Vnl nL>

> n,=N & n.=k
1=1 X °

Thus k(Aj - Aj+1) * n. ^> P(no,nlt...,nL)

> n.»N & n.=k
1=1 * J

Also Aj • \ P(n0,n1,...,nL)

L
> n,=N & n.=N
1=1 * J

so that N-A. = n. ^> P(n ,n.,...,nL)

L
T"~n>N A n4=N w1 '

Substituting Into equation 5-9 •

QJ °S"^ I ?(n°,ni "^
L
> n.=N & n.=k
1=1 x J

^> n^ P(n0,nlt...,nL)

^__n.=N
1=1 J

111

GWT > ni J['PiW"1 5-11
n,=N

1=1 *

This alternative representation for Q. will be exploited

further in Chapter 6.

System Performance

Since central server networks are being considered

primarily as models of batch processing systems, it is

natural to define system performance in terms of the average

number of Jobs processed per unit time. This quantity is

comparatively easy to compute for any central server net-

work. Recall that If a central server network is observed

for an interval of time of length T, the expected amount of

time that the CPU will be active during this Interval is

AT. Since the expected amount of CPU processing time per

program is 1/(U0P0) by Table *4—2, the expected number of

complete programs processed during the interval Is

A T/(l/(u,c)) « A.Tuj.. Hence the average number of o o o o o o

programs processed per unit time is A Tu p /T = A u p .

This quantity, which will be known as the processing

capacity of the network, will be used in subsequent sections

of this thesis as the measure of system performance.

The expression for processing capacity may appear to

be heavily weighted in terms of CPU performance, but in fact

112

this is not the case. To demonstrate this point note that

the expected amount of time that the J— PPU is active during

an interval of length T is A.T. Since the expected amount

of processing time per program on the J— PPU is p*/(u.p)

by Table 4-2, it is also possible to express the expected

number of complete programs processed during Interval T as

A.T/(P«/(U«PQ)) = AiTuiP0/Pi • Hence the expected number

of programs processed per unit time according to this

analysis is (A.Tu .pQ/p J/T » AiujPc/pj * But AJUJpo^pl "

A u p by the Conservation Law. Thus the processing capacity

of a central server network has no special connection with

CPU performance and can be represented in equivalent form in

terms of the performance of any other system processor.

As a final point it should be noted that under the

current definition processing capacity can only be used to

compare the performance of systems which are processing

identical populations of programs. All the examples that

will be considered in this thesis comply with this require-

ment.

Bottlenecks

The term "bottleneck" is generally applied to a system

component whose behavior is seriously degrading the perform-

ance of an entire system. Despite the widespread use of

this term. It is not Immediately obvious how to measure the

degradation in system performance that Is due to the behavior

113

of an individual component. One possible approach is to

calculate the effect on system performance of a small

increase in the performance of the component in question.

If a small Increase in component performance produces a

considerable increase in system performance, it would seem

reasonable to conclude that the component is seriously de-

grading system performance and creating a bottleneck.

As the increment in component performance used for

comparison purposes becomes arbitrarily small, the extent

to which a particular component is creating a bottleneck

will become proportional to the rate of change of system

performance with respect to the performance of that com-

ponent. In the case of central server networks where

individual servers correspond to system components, pro-

cessing rates (I.e., u ,u1t...,uT) correspond to component
O X XJ

performance, and system performance is measured in terms of

processing capacity Ci.e., A u p), it follows that the

extent to which the J— server is creating a bottleneck is

proportional to g-r A u p . Note that A is being regarded
J

as a function of u0»
ujtu2»•••»UL* po,pl,p2'* * *,pL and N

as indicated in equations 5-3 and 5-^'

If h: Kn
nVn - ^7 Aui) for all i,je{o.l,2 h] ou. o o o ou. o o o u •"

then the corresponding central server network has no bottle-

necks and is in some sense balanced. If on the other hand
a

one of the ~ A U p is considerably larger than all the
Ou.. o 0*0

others, then the corresponding server is creating a serious

11^

bottleneck and a small increase In its processing speed can

be expected to produce a significant increase in the system's

processing capacity. This should not be construed to mean

that bottlenecks are always undesirable. In fact, it is

sometimes advantageous to design bottlenecks into a system.

The section of Chapter 6 dealing with optimal peripheral

processor utilization (p. 152 ff.) illustrates precisely such

a situation.

115

COMPUTATIONAL FORMULAS

Basic Iterative Formula

If X. Is defined as p.u /u. then equation 5-3 can be

written more simply as

G(N) - > TT <xi>nJ 5-12
4 J=l J

Equation 5-12 has an appealing mathematical symmetry and Is

also well suited for certain types of symbolic manipulation

such as symbolic differentiation. However the computational

aspects of equation 5-12 are most unattractive, especially

In light of the observation that there are '7t»: states
i-j

of the form (n ,n,,...,nT) for which > n. * N. Thus the OIL J=1 J

calculation of G(N) for the comparatively modest case In

which L « 7 and N • 17 requires the summation of 3^6,10^

terms, each of which Is the product of seven factors which

are themselves powers of the basic units (I.e., the X 's).

While such computations are well within the capability

of modern digital computers, the large number of floating

point additions Is a cause for at least some concern. There

Is also the danger of floating point overflow since powers

17 of X. as high as (X.) ' must be calculated.

•This fact Is demonstrated by Feller (32, p. 38).

116

Fortunately there exists an extremely efficient com-

putational algorithm for evaluating G(N). For the case in

which L = 7 and N = 17 this algorithm reduces the re-

qlred computation to 119 additions and 119 multiplications.

Furthermore, the values of G(1),G(2),...,G(16) are generated

as Intermediate results so that it is possible to proceed

directly to the calculation of the marginal distribution of

customers at each server once G(17) is obtained. That is,

once G(1),G(2),...,G(17) are obtained, equation 5-7 can be

1 2 17 k used to obtain A ,A,A ' . The values of the A. for o o o J

j=l,2,...,L can then be obtained using the Generalized

Conservation Law (i.e., equation 5-8). It is also possible

to calculate expected queue lengths at this point, either

directly from the G(k)'s using equation 5-10 or indirectly

from the A*s using equation 5-9i line J.

Before discussing the computational algorithm for G(N)

it Is necessary to define one auxiliary function. Assume

that Xj.Xp,...,*- are specified and define

g(n.£) = J> IT U)nJ 5-13
^- J=l J

n >n
>iJ

Equation 5-13 is defined for \^i^L and n^O. Note that G(n)

as defined in equation 5-12 is equal to g(n,L) for any value

of n. Note also that g(0,^) • 1 for l*l«L.

117

Next note that if n*l and i?=*2, then

g(n.i) - 3>~ IT (xjnj + V" " nn- (x.)nj

n .±n & n«=0 2!n «-n & n^-1
3=1 J 3=1 J

Now

3 TT (xjnj = ^ TT (xjnj
4 3=1 J £y .1=1 J

3-1 J
n.^n & n/=0 > n .fen

3=1 J

= g(n.^-l)

Also

> n .fen & rvcil > n >n-l
3-1 ° 3-1 J

X^> g(n-l,/)

Thus g(n.i) = g(n,£-l) + X* g(n-l,*) 5-1**

The boundary condition corresponding to J£ =1 is

g(n,l) = iti (X.)k 5-15
k=0 l

118

Equation 5-1^ together with boundary condition 5-15

completely defines the computational algorithm for G(N).

This algorithm is represented schematically in Table 5-1 •

A. - j^"o o ••• Afl ••• A.-r

X <£ j ••• JL ••• JLi

01 1 l ... l ... 1

l i+x1

2 1+X1+X1
2

g(n-l.i)

1 : |X*

n g(n.^-l) > g(n,i)

N T~ (X.)k g(N,L)
k=0

Table 5-1

Algorithm Operation

Table 5-1 illustrates that each Interior value of g(n,^) Is

obtained by adding together the value immediately to the

left of g(n.i') (i.e., g(n,<?-l)) and the value Immediately

above g(n,i>) multiplied by the corresponding column variable

(i.e., X«-g(n-l,j?)). Observe that the leftmost column will

be properly initialized if it is assumed that there is a

column of l's immediately to the left of that column at the

start of the algorithm.

119

Note that the ultimate objective of the algorithm is to

determine the value In the lower right-hand corner of the

table since this corresponds to g(NfL) = G(N). However the

entire rightmost column is of interest since g(ntL) = G(n)

for n=l,2,...,N. Thus the values of G(n) for n=l,2,...,N-1

are natural by-products of the computation of G(N).

Table 5-1 is slightly misleading since It creates the

impression that it is necessary to store the entire N by L

matrix of values of g(n,i?) in order to obtain the values of

interest in the rightmost column. In fact it is never

necessary to store more than N values at any given time.

To see this, suppose that the iteration begins with the

cell in the upper left-hand corner of the table and then

proceeds by moving down one column at a time. At any given

Instant the only values required to complete a column are

those values which are below the most recently computed

value and one column to the left plus of course the most

recently computed value itself. In addition, all the values

above the most recently computed value must be retained

since they will be required in the computations for the next

column. This state of affairs is represented schematically

in Table 5-2.

As Illustrated in Table 5-2, the basic iterative step

in the algorithm Involves replacing C(n) by C(n)+X£C(n-l)

and then either incrementing n by one if n<N or resetting

n to one and moving to the next column if n=N. Note that

120

when the algorithm terminates the final values of C(l),C(2)t

...,C(N) will correspond precisely to the values in the

rightmost column of Table 5-1 (i.e., to g(l,L), g(2,L),

...,g(N,L)).

xl *2 x3

123 £ L

0 1

1

2

3

1

C(l)

C(2)

c(3)

n-1

n

n+1

C(n-l)

C(n)

C(n+1)

last value obtained

next value to be obtained

C(n) will be set equal to

C(n) + X/C(n-1)

N C(N)

Table 5-2

Storage Allocation

121

To implement the algorithm it Is necessary to first set

C(n) equal to 1 for n=0,l,...,L so that the leftmost column

will be properly initialized during the first iteration.

Then the basic iterative step must be carried out for each

cell in the table. The complete algorithm for computing the

rightmost column of Table 5-1 can thus be expressed in

FORTRAN-like notation as follows:

DO 1 n=0,N

1 C(n)=l

C

DO 2 <2 = 1,L

DO 2 n=l,N

2 C(n)=C(n) + Xi*C(n-l)

Note that each evaluation of C(n) requires one addition

and one multiplication. Since C(n) is evaluated a total of

N-L times during the course of the algorithm, N-L additions

and N-L multiplications are required for the determination

of G(1),G(2) G(N).

The preceding example illustrates that the algorithm

defined by equation 5-1^ is not only efficient from a

computational standpoint, but also from the standpoint of

storage requirements for both data and procedure. The

next section discusses the way in which this algorithm and

its variants can be applied to the wide class of queueing

122

networks considered In Appendix B.

Extensions

Two extensions to the basic iterative formula will be

considered In this section. The first extension, which is

relatively minor, will cover the case of closed queuelng

networks with simple exponential servers. These networks

are discussed in the first section of Appendix B. The second

extension will cover the networks discussed in the second

section of Appendix B: namely, closed queuelng networks with

queue dependent exponential servers.

The steady state distribution of customers in a closed

queuelng network with simple exponential servers is presented

in equations B-8 and B-9. These equations are of the same

form as equations 5-2 and 5-3 except that yQ/u • 1 in the

case of 5-2 and 5-3• Setting X, equal to y,/u., equation

B-8 becomes

1 L n p<Vni nL} " GTNT Tjj (V J 5"16

and equation B-9 becomes

G(N) > 7T <xi)nJ 5-17

> n .»N
j<=0 J

123

Equation 5-17 can be evaluated in an efficient manner

with the aid of a minor change in the definition of g(n,/).

^ i
Let g(n.i>) = > TT UJ 3 5-18

I J=0

Next note that the argument leading from 5-13 to 5-14

is still valid and that

g(n,/) = g(n,f-l) + X^g(n-ltJg) 5-19

for 1 fc n 6 N and 1 * / * L.

The boundary condition corresponding to /=0 Is

g(ntO) = (XQ)
n 5-20

Thus the only differences between the computation of

G(N) in 5-17 and the computation of G(N) in 5-12 are the

boundary condition and the presence of X . The boundary

condition can clearly be accounted for by initializing C(n)

to 0 instead of 1 for n=l,2,...,N. C(0) must still be in-

itialized to 1. The computational algorithm for obtaining

the values which correspond to the rightmost column of

Table 5-1 for the case where G(N) is defined by equation

5-17 can thus be expressed in FORTRAN-like notation as

follows:

124

C(0)=1.0

DO 1 n=l,N

1 C(n)=0

C

DO 2 £=0,L

DO 2 n«l,N

2 C(n)=C(n) + Xg*C(n-l)

The computation of marginal distributions Is also quite

similar to the previous case. Note that a natural analog to

the Generalized Conservation Law (i.e.* equation 5-8) can be

derived since

Aj = \ P(n0,nlt...,nL) 5-21

L
> n.»N & n.^k
1-0 X J

> ctw ft ixi>ni by 5_i6
1-1

> n.=N & n.*k
i»0 x J

BHT"/^ ^<Xi)ni

>n,=N-k
1=0 x

125

A* . <x/2i^l 5.22

Equation 5-22 is valid for J=0 as well as for J=l,2,...,L.

Thus, once G(1),G(2) G(N) are calculated, the marginal

distribution of customers at each server may be readily

obtained.

The extension to the case of queue dependent exponential

servers is slightly more complex. If X. is once again set

equal to y./u., then equations B-15 and B-l6 which define the

steady state distribution become

L / y \ n .

P(rVnl nL> " G^^AjfejT 5"23

and

G(N) . y T j-fe-y 5-24

> n,»N
J=0 J

where A, Is defined in equation B-ll.

In this case g(n,^) will be redefined as

J=0 "JV"J

y n .»n
J=0 J

5-25

126

It is assumed in equation 5-25 that Ofci'fcL and n*0. Note

that it is again true that g(0,^) = 1 since A-(0) = 1 by

equation B-ll.

Next note that if 1>/±L

n

g(n,i>) 2
k=0

(X4)"J

y 5—TT^i

J=0 J

J-0 -J»"j

& n^=k

n

>

k=0

(X£)
K

Aj(ky

2_n .=n-
J=0 J

rt
(x1)

nj

3-0 Vnj>
k & n^-0

n (X,)'

£o *?*)
g(n-k.^-l) 5-26

It also immediately follows from 5-25 that the boundary

condition corresponding to ^=0 is

g(n.O) A^nT 5-2?

127

The computational formula for g(n,^) given in equation

5-26 is represented schematically in Table 5-3.

Xl X2 X3

12 3

A f • • •

£ ... L

n

111

n-2

n-1

n

(X/)

^AjTnl

(X/) n-1

(x^)n"2 .

(x/)

g(n-l^-l) x
(X/)

1

•* g(n.n

N

Table 5-3

Algorithm Operation for Queue Dependent Servers

128

The storage allocation policy depicted in Table 5-2 is

clearly not adequate in this case since it is necessary to

save the entire £-1— column until the last entry in the i—

column has been calculated. If the entries in the I— I i.e.,

current) column are represented by C(n,LC) for n=l,2 N

and the entries in the /-l— (i.e., previous) column are

represented by C(n,LP) for n=l,2,...,N , then the basic

iterative step of the algorithm involves setting C(n,LC)

equal to £Z TcKn-k.LP)* (X£)
kj / A^(k) .

When expressing this algorithm as a FORTRAN-llke program

it is convenient to assume that C is a doubly subscripted

variable with dimension N+l by 2. The algorithm is then:

C(0,1)=1

DO 1 n=l,N

1 C(n,l)=0

Initialize
first
column

LP=1

LC=2

Initialize
LP and LC

DO 3 ^=0,L

DO 2 n=l,N

C(n,LC)=0

DO 2 k=0,n

2 C(n,LC)=C(n,LC) + C(n-k,LP)*(X^**k)/A^(k)

LP=3-LP

3 LC=3-LC

Ferform
basic
iterative
step

Interchange
LP and LC

129

Note that each time a column is completed LC and LP are

interchanged so that the most recently computed column

becomes the previous column for the next iteration and the

other column becomes the storage area into which the results

of the next iteration will be placed. When the algorithm

terminates the values of C(nfLP) will correspond to the

values of g(ntL) for n=l,2,...,N.

The marginal distribution of customers at each server

is also more complicated in this case. To demonstrate how

this distribution can be computed, first define

Ej = ^> P(no,nlt...,nL) 5-28

r-o * J

Note that E* • A^ - A^+1 where A* is defined in

equation 5-21• Thus far the strategy has been to obtain the

values of A. first and thus, by implication, the values of

E^ , but in this case it is easier to obtain the values of

Ej directly.

At this point it is necessary to introduce one additional

auxiliary function. Let

h(n,i) - > I I A fe) 5-29

__n .=n & n/;=0
J=0 J

130

Jote that equation 5-29 bears a marked resemblance to equa-

tion 5-25; in fact, it is easy to see that h(n,L) = g(n,L-l)

for n=0,1,...,N.

Returning to the calculation of E. , note that

" ^

i fr (Vni

GTNT l=0 A1(n1)

1=0
n.=N & n .=k

(X«)ni

1=0 W

1=0
n.=N-k & n .=0

(XJ} h(N-k.J)
Aj(k) G(N) 5-30

Thus, assuming the values of h(n,J) have all been calculated,

the values of E. can be easily obtained using equation 5-30.

It has already been pointed out that the values of h(n,L) are

automatically calculated by the algorithm for G(N) so that

h(n,L) = C(n,LC) for n=0,l,...,N at the completion of this

algorithm. To obtain values of h(n,jP) for 2^L it is neces-

sary to permute the sequence of X.'s so that the last

(i.e., L—) X, is equal to X^. The algorithm for G(N) must

then be applied to this permuted sequence. It is of course

131

st possible to stop at the L-l— column in this case since the
X. 1-

L— column contains no new information.

It should be noted that it is possible to adopt a hybrid

approach at times when some of the servers in the network

are of the simple type (i.e., some of the A.(k) are identl-

cally equal to one). In these cases the values of A, for

the simple servers can be computed directly from equation

5-22 with no need to resort to equation 5-30. Also, if the

servers are permuted so that the first S+l are all simple,

then the first S+l columns of Table 5-3 can be computed

using the algorithm of Table 5-1* The remaining L-S columns

must then be computed using the more complex algorithm of

Table 5-3. The hybrid algorithm appears on the following

page. This algorithm should have wide applicability since

many networks of interest contain at least a few simple

exponential servers.

132

C(0,1)=1

DO 1 n=l,N

1 C(ntl)=0

Initialize
first
column

DO 2 0=0,S

DO 2 n=l,N

2 C(n,l)=C(n,l) + X£*C(n-l,l)

Evaluate first
S+l columns
using algorithm
for simple expo-
nential servers

LP=1

LC=2

Initialize
LP and LC

DO 4 jNS+l.L

DO 3 n=l,N

C(n,LC)=0

DO 3 k=0,n

3 C(n,LC)=C(n,LC) + C(n-k,LP)* (X£**k)/Aje(k)

Perform
basic
iterative
step

LP=3-LP

I* LC=3-LC

Interchange
LP and LC

Hybrid Algorithm

for the computation of g(N,L)

133

CHAPTER 6: APPLICATIONS

INTRODUCTION

The analysis presented in Chapter 5 dealt primarily

with the mathematical aspects of central server networks.

That is, the steady state distribution and its associated

properties were all derived without explicit mention of the

fact that central server networks are of interest as models

of multiprogramming systems. Since central server networks

were treated as mathematical objects rather than mathematical

models. Chapter 5 may be regarded as an excursion into the

realm of pure mathematics.

In this chapter central server networks will once again

be regarded as mathematical models and will be used to examine

a number of problems related to the operation of actual

multiprogramming systems. Three specific problems related

to buffer size determination, peripheral processor utiliza-

tion and page traffic balancing will be considered.

In each case the emphasis will be on gaining insight

into the nature of the underlying stochastic process. While

such insight has always been regarded as the primary objective

of the central server model, it should be noted that the

model can also be used to examine the behavior of actual

multiprogramming systems simply by assigning empirically de-

termined values to the model parameters and then correlating

ljk

predicted behavior with observed behavior. This alternative

use of the central server model represents a distinct depar-

ture from the underlying theoretical orientation of this

thesis and thus will not be pursued further at this time.

BUFFER SIZE DETERMINATION

Problem Definition

In order to optimize buffer size for I/O devices in a

multiprogramming environment it is necessary to balance a

number of interrelated factors. For example, as buffer size

increases the amount of main memory space available for pro-

gram storage decreases, and this in turn reduces the degree

of multiprogramming and tends to degrade system performance.

On the other hand, as buffer size decreases the number of

I/O transfer requests per program increases. Assuming that

each transfer involves a certain amount of overhead which is

independent of buffer size, the total amount of overhead per

program will thus Increase as buffer size decreases, and this

will also tend to degrade system performance. Hence it is

important that buffers be neither too large nor too small.

Changes in buffer size bring about other effects as

well. For example, decreasing the buffer size associated

with a particular peripheral processor decreases the expected

processing time per request for that processor, increases

the total expected number of FPU and CPU processing requests

135

per program, decreases the expected time required to complete

a CPU processing request (since FPU requests become more fre-

quent), and alters the probabilities governing the selection

of peripheral processors. The remainder of this section will

be devoted to analyzing this set of interrelated factors with

the aid of the central server model of multiprogramming.

Relation Between Buffer Size and Network Parameters

Suppose that it is desired to optimize buffer size for

st the 1— PPU in a central server network. Assume that the

corresponding system contains M units of main memory which

may be used for either program or buffer storage, and suppose

st that average program size excluding buffer space for the 1—

PPU is equal to one memory unit.

Next suppose that the amount of time required to perform

an I/O transfer on the 1— PPU is a random variable made up

of two components: the first component represents overhead

and has an expected value of v regardless of buffer length,

while the second component represents actual transfer time

and has an expected value of s^-b where s., is a constant and

b is the length of the buffer measured in memory units.

Since all processors in a central server network are assumed

to have exponentially distributed service times, it will

further be assumed that the amount of time necessary to carry

st out an I/O transfer on the 1=— PPU, given that buffer size

136

st for the 1— PPU is equal to b, is an exponentially distributed

random variable with mean v + s..-b .

Four additional factors are required to complete the

specification of the network. These are defined as follows:

st r. = total expected amount of data transferred to the 1—

PPU per program (measured in memory units of data)

r. = total expected number of processing requests directed

to the J— PPU per program (J=2, 3, . • . .L)

s . = expected amount of processing time for a request

directed to the j— PPU (j=2,3,..,L)

C = total expected amount of CPU processing time per program

The next step is to determine the parameters of the

associated central server network under the assumption that

buffer size for the 1— PPU is equal to b. Note first that

u. = 1/s 1 (J=2,3,...,L) regardless of the value of b, and

that u1 = l/(v+s1b) by the definitions of v and s-.

Determination of the branching probabilities is slightly

more complicated. Since buffer size Is equal to b, the

total expected number of transfer requests per program

directed to the 1— PPU is r1/b . Thus the total expected

number of PPU processing requests per program is r^/b +
L
> r. . Applying equation 4-4,
J=2 J

l/po - 1 = r,/b + ZI rj

L
Thus prt = l/tl+r./b+T"" r.)

° 1 j=2 J

137

By the results collected in Table 4-2,

Pj/P0 = r^ for j=2,3,...,L

L
Thus Pj = rjPo = rj/d+^/b+Z^rj)

Also, P]/PO =
ri/b

L
Thus Pl = (r1/b)po = (r1/b)/(l+i^/b+T" r)

All the branching probabilities have now been expressed as

functions of b.

To determine u note that l/(u p) = C by Table 4-2 . o j o o

Thus u = l/(p C) = (l+r./b+^I r .)/C . The only network
o o i J=2 J

parameter still to be determined is N, the degree of multi-

programming. Since each program requires b memory units

st for a buffer for the 1— FPU and one memory unit for other

purposes (including program storage), it immediately follows

that N = M/(l+b) .

Non-Integral Values of N

This last equation introduces certain difficulties

because N is no longer necessarily integral as required by

the original central server model. Fortunately, there is a

rather simple way to remedy this situation. Note first that

one way of interpreting the statement that N = 6.5 is to

assume that there are 6 programs in the system for half the

time and 7 programs in the system the remainder of the time.

138

In general, the statement that N = I + h where I Is an

integer and 0<hcl can be Interpreted to mean that there

are I programs in the system part of the time and 1+1 pro-

grams in the system the rest of the time, where the fraction

of the time that there are I programs in the system is equal

to 1-h and the fraction of the time that there are 1+1 pro-

grams in the system is equal to h.

Continuing with this line of reasoning, if PNln ,n..,...,

nL) is the steady state probability that there are n, pro-

grams at the j— server in a central server network, given

that there are N programs in the entire system, then

PN(n ,n., . . . ,nL) will be defined as (l-h)-P-.(n ,n..,...,nT) +

h-Pr+1(n .n.,...,nL). That is, if N is not integral then

the steady state probabilities associated with N will be

defined by simple linear interpolation using the two integral

values closest to N. There are obviously other ways of de-

fining PN(n ,nlf...,nL) for non-integral values of N, but

these will not be explored at this time since the linear

interpolation method is satisfactory for the problem at hand.

Chapter 7 contains a discussion of some of the alternative

methods of dealing with the problem of non-integral values

of N.

Optimization Equations

Now that all the network parameters have been represented

as functions of b, it is possible to consider the problem of

139

optimizing system performance with respect to b. Since sys-

tem performance is measured in terms of processing capacity,

the problem is thus to optimize

L
> TT (p.u/u/j
L J-i
T~n ,*N-1
J=l J

A~U~P~ = u p O OrO , 0*0

U (PJVU/J

with respect to b

where p = l/(1+r../b+]> r.)
° j=2 J

L
p. = (r1/b)/(l+r1/b+5I rj 11 X J=2 J

L
Pj = rj/d+yb+Hr^) for J=2,3 L

L
u = (l+ri/b+2_ r,)/C o i J=2 J

u1 = l/(v+s1b)

uj = 1//s a for ^=2,3» • • •,L

and K = M/(l+b) where non-integral values of N are

evaluated by linear interpolation

Even though all the network parameters - except the u .

for j=2,3,...,L - depend on b, many of these dependencies

140

cancel each other out in the expression for A u p . For ^ o o*o

example, if X, is defined as p.u /u., then for j=2,3,...,L

[r/(1+ri/b+|i rj)][(1+ri/b+^ rj)/c]
l/s

= rJs/c

Thus X, is independent of b for j=2,3»•••»L-

Also u B = (l+ryb+^3 r,)/C
° ° I x j=2 J

l/(l+r1/b+ £r'>]
= 1/C

Since up is independent of b, this factor can be omitted

from the original optimization problem so that the problem

becomes one of optimizing A - rather than A u p - with o o o o

respect to b.

Finally, note that

xi • PiVui

[(r1/b)/(l+r1/b+ £'*}[{ 1+T./h+y~ r.)/C
1 J=2 J]

l/(v+s1b)

"Fc-(v+sib)

r
lv + risi

b-C

141

Thus the problem is to optimize

> TT (xjnj
4 J=I J

_n ,6N-1
J=l J

y "iT(x1)
nj

4 J=I J

with respect to b

rlsl rlv where X± = -^- + ^r

rj!i

and

•j c

N = M/(l+b)

for j=2f3,...,L

where non-integral values of N are

evaluated by linear interpolation

Analysis

At this point it is useful to consider the consequences

of setting v, the expected overhead per transfer, equal to

zero. In this case the only factor which remains dependent

upon b Is the degree of multiprogramming since N = M/(l+b).

This is true even though the expected number of processing

requests per program for the 1— PPU (i.e., r1/b) and the

st expected time to complete a processing request on the 1—

PPU (i.e., Sjb) still depend on b. The point is that

these effects cancel each other out entirely in the zero

overhead case. Hence it is desirable to select a value of

142

b which is as small as possible since this will maximize N

and thereby optimize system performance.

The introduction of non-zero overhead significantly

alters this state of affairs. When v is greater than zero

a decrease in b will not only Increase the expected number

st of processing requests per program directed to the 1— PPU

(i.e., r./b) but also will increase the total expected

overhead per program (i.e., v«r../b). This increase in total

overhead will tend to degrade system performance, thus

counteracting the improvement in system performance which

results from the increase in N.

Note that decreases in b produce two important effects:

total overhead Increases which tends to degrade performance,

and N increases which tends to improve performance. Since

the degradation associated with the first effect decreases

as v decreases, it is possible to decrease b further when v

Is small before reaching the point at which the loss associ-

ated with the first effect outweighs the gain associated

with the second effect. In other words, as v decreases the

optimal buffer size also decreases.

The preceding analysis also has Implications for the

case in which v is held constant and the size of main memory

(i.e., M) is varied. Under these circumstances the improve-

ment associated with the second effect will be less pro-

nounced for larger values of M since it is less important

to increase N when N is already large. That is, the gain

1^3

in performance in going from N=6 to N=8 is less significant

than the gain in performance in going from N=2 to N=^. Hence

it is possible to decrease b further when M is small before

reaching the point at which the gain associated with the

second factor ceases to outweigh the loss associated with

the first factor. This implies that optimal buffer size de-

creases as total memory size decreases.

Table 6-1 illustrates these general remarks with specific

numerical examples. Each row of the table is associated with

a particular value of s.. so that, within each row, the trans-

st fer rate of the 1— PPU is held constant while the expected

overhead per transfer (i.e., v) and the size of main memory

(i.e., M) are varied. Note that within each memory group

the optimal buffer size decreases as overhead decreases. It

it also possible to observe that optimal buffer size decreases

as main memory size decreases simply by comparing columns

which have the same associated value of v.

None of the results presented thus far could be described

as particularly surprising. However, Table 6-1 illustrates

one effect which may indeed merit such a classification. To

observe this effect it is necessary to scan down the columns

of the table rather than scanning across the rows. Note that

the only factor that varies within a column is the transfer

rate of the l2-^ PPU. That is, the further down In a column

an entry appears, the lower the associated transfer rate. A

scan down any of the columns thus reveals that optimal buffer

1^4

M = 4 10 20

v = .25 • 50 .75 .25 .50 .75 .25 .50 .75
1

'• .1 • 33 .'+9 .65 • 37 .62 .81 .38 .67 .92

! .2
1 .33 .50 .65 .40 .66 .85 .42 .71 1.00

! .3 .33 .50 .66 .43 .67 .88 .44 .78 1.03

: .4 .33 .51 .66 .43 .67 .92 .49 .82 1.11

; .5 .33 .51 .67 .44 .69 .96 .54 .89 1.21

; .6 * .33 • 52 .67 .47 .73 1.00 .59 .97 1.22
i

•7 .3^ .52 .68 • 50 .76 1.00 .66 1.00 1.31

!-8 .34 • 53 .68 .53 .79 1.00 .70 1.08 1.41

.9 • 34 • 53 .69 .55 .82 1.00 .78 1.18 1.50

1.0 • 35 .53 .69 .58 .85 1.00 .82 1.22 1.50

1.1 .35 .54 .70 .61 .89 1.03 .89 1.26 1.56

1.2 .35 .54 .70 .65 .92 1.06 .99 1.36 1.66

1.3 .35 • 54 .71 .67 .96 1.08 1.00 1.48 1.78

1.4 .36 • 55 .71 .67 1.00 1.11 1.07 1.50 1.86

1.5 • 36 .55 .71 .67 1.00 1.15 1.19 1.50 1.86

sl

M
v

Sl

L

C

s

Table 6-1

Optimal Buffer Size

Main memory size

Expected overhead per transfer

Expected time to transfer a buffer of unit size

J

k
1000

1000 for j=l,2,3,4

1 for J=2,3,4

Additional problem parameters

145

size increases as the transfer rate decreases. In other

words, slower devices should have larger buffers than faster

devices.

There are no doubt factors beyond the scope of the model

which tend to counteract this effect. However, it is still

important to understand the factors within the model which

work to bring this effect about. Recall that the two most

significant consequences of changes in buffer size are the

change in the degree of multiprogramming and the change in

the expected amount of overhead per program associated with

the 1— FPU. Next note that as the transfer rate of the 1—

PPU decreases, the extent to which that PPU is creating a

system bottleneck and degrading overall performance Increases,

This is true regardless of the expected overhead per transfer,

This bottleneck effect is then compounded by decreasing

b since decreases in b increase the overhead associated with

the 1— PPU. If the 1— PPU is already creating a serious

bottleneck because of its low transfer rate, the additional

overhead associated with small buffer size will be quite

harmful, and hence it will be preferable to select a larger

buffer size even though this reduces the degree of multipro-

gramming to a significant extent.
st On the other hand, if the 1— FPU has a high transfer

rate and is not acting as a system bottleneck, buffers can

be made quite small before the combination of overhead plus

transfer rate creates a serious bottleneck. The optimal

146

buffer size will thus be smaller in this case since the im-

provement in performance due to increasing the degree of

multiprogramming will not be outweighed by the bottleneck

effect until b reaches a smaller value. Hence, within the

context of the model, slower devices should be allocated

larger buffers than faster devices.

Table 6-2 amplifies these remarks still further. The

table corresponds to the row in Table 6-1 for which the time

to transfer a buffer of unit size (i.e., s^) is equal to .5 •

The entries in Table 6-2 illustrate the way in which system

performance varies as a function of buffer size for each

combination of overhead and memory size in the corresponding

row in Table 6-1. The same values appear in both Part A and

Part B of Table 6-2, but the columns are grouped together

differently in each part. The values in Table 6-2 are also

presented graphically in Figure 6-1.

In Part A of Table 6-2 the values are grouped together

according to overhead. The upper rows illustrate that, when

buffer size is small, the chief factor affecting performance

is the bottleneck effect created by the excessive overhead

st load on the 1— PPU. Thus, performance is approximately the

same within each overhead group even though main memory size

varies greatly. In other words, the degree of multiprogram-

ming has little effect on system performance because of the

st bottleneck created by the 1— FFU. Note that the degradation

due to the bottleneck increases as the expected overhead per

14?

V =
>

\ .25 • 50
1

.75 |

M • 4 10 20 4 10 20 * 10 20 j

i .1
i

.29 .33 • 33 .18 .18 .18 .12 .13 .13
1 .2 ! .38 .53 .57 .28 • 33 .33 .22 .24 .24

0
.40 .60 .71 • 33 .45 .46 .28 .33 • 33

.4 .40 .62 .76 .35 .51 • 57 .31 .41 .42

.5 .40 .62 .77 .36 .55 .64 • 32 .46 .50

.6 .39 .62 .77 • 36 .56 .68 • 33 .49 .56
7 .38 .61 .76 .35 .57 .71 • 33 • 51 .61!

.8 •37 .60 .76 • 35 .57 .71 • 32 • 52 .64J

.9 .36 • 59 .75 .34 • 56 .72 .32 • 53 .66

1.0 .35 .58 .74 • 33 .56 .71 .32 .53 .67
1.1 • 34 .57 .73 .32 .55 .71 • 31 .52 .6?j
1.2 .33 .56 .73 .31 .54 .71 .30 .52 .68|

1

1-3 .32 .55 .72 .31 • 53 .70 .29 • 51 .67|

1.4 • 31 .54 .71 .30 .52 .69 .29 .51 .67|

1.5 .30 .53 .71 .29 .52 .69 .28 .50 .67|

b

Table 6-2 Part A

System Performance as a Function of Buffer Size

M • Main memory size

v = Expected overhead per transfer

b = Suffer size

148

H.
' 4 10 20

V a .25 • 50 .75 .25 .50 .75 .25 .50 .75

•i .29 .18 .12 .33 .18 .13 • 33 .18 .13

! -2 .38 .28 .22 .53 .33 .24 • 57 .33 .24

•3 .40 • 33 .28 .60 .45 .33 .71 .46 .33
1 .4 .40 • 35 • 31 .62 .51 .41 .76 .57 .42

•5 .40 .36 • 32 .62 .55 .46 .77 .64 • 50
.6 .39 .36 .33 .62 .56 .49 .77 .68 .56

i -7 .38 .35 .33 .61 .57 .51 .76 .71 .61
.8 • 37 • 35 • 32 .60 .57 • 52 .76 .71 .64

•9 .36 .34 • 32 .59 .56 .53 .75 .72 .66

1.0 .35 • 33 .32 .58 .56 .53 .74 .71 .67
1.1 • 34 • 32 .31 .57 • 55 • 52 .73 .71 .67
1.2 .33 .31 .30 .56 • 54 .52 .73 .71 .68

1.3 .32 .31 .29 .55 .53 .51 .72 .71 .67
1.4 ! .31 .30 .29 .54 .52 .51 .71 .70 .67

1.5 .30 .29 .28 .53 • 52 • 50 .70 .69 .67

b

Table 6-2 Part B

System Performance as a Function of Buffer Size

M = Main memory size

v = Expected overhead per transfer

b = Buffer size

149

transfer Increases.

Conversely, the lower rows of Table 6-2 Part B illustrate

that the expected overhead per transfer has no appreciable

effect on system performance when buffer size is large. In

this case the most important factor limiting performance is

the degree of multiprogramming, and this in turn is dependent

only upon the size of main memory (i.e., M).

The curves plotted in Figure 6-1 all Illustrate the

fact that the degradation due to excessively small buffers

is considerably more severe than the degradation due to ex-

cessively large buffers. This is because the expected total

overhead per program increases quite rapidly as buffer size

decreases and, in fact, goes to infinity as buffer size

approaches zero. Thus it is generally better to err on the

side of larger than optimal buffers in cases where some un-

certainty exists.

As stated earlier, there may be other factors not re-

presented in the central server model which tend to make

large buffers more desirable for fast devices. For example,

in real-time systems it is important to insure against buffer

overflow even though this may result in large buffers and a

sub-optimal degree of multiprogramming. The point of this

analysis is not to discount the importance of these other

factors, but merely to introduce one additional and perhaps

unexpected factor into the decision making process.

150

= Relative performance

.2 .6 .8 1.0 1.2

b = Buffer size

Figure 6-1

Effect of Buffer Size Variation on Relative Performance

151

PERIPHERAL PROCESSOR UTILIZATION

Problem Definition

Consider a system which contains a set of functionally

equivalent peripheral processors such as a disk, a drum and

a data cell, and assume that it is possible to vary the

relative number of I/O transfer requests which are directed

to each of these processors. Such variation might be brought

about by altering monitor tables which control the movement

of overlay segments and temporary files, or by adjusting

pricing policies so that it is more economical to use one

device rather than another. In any event it will be assumed

that the total number of I/O transfer requests directed to

this set of functionally equivalent processors is constant,

but that the relative number directed to each Individual

processor is a specifiable parameter. The optimal selection

of these parameters is thus one of the many problems of

operating system design.

Optimization Equations

One method of approaching this problem is to assume

that the system in question is represented by a central

server network. Let S be the set which contains the sub-

scripts of the functionally equivalent processors, and let

T be the total expected number of I/O transfer requests per

program directed to this set of processors. Since the

152

expected number of processing requests directed to the 1—

PFU in a central server network is p,/p , the values of p.

for i€S must be chosen so that > p*/p = T. The other
i«S 1 °

parameters characterizing the network such as the speed of

processors, the degree of multiprogramming and the branch-

ing probabilities for the other processors in the network

(i.e., the p. for i^S) are all constants. Assuming system

performance is measured by processing capacity, the problem

then is to maximize

L
> jr <P3w

nJ
,.> n £N-1
3-1 °

AouoPo " L
: uopo 6~1

">~ TT (Plu /u)nj

>~n,^N
J=l °

with respect to {p.| 1 £ S} ,

subject to the constraints that ^^ p. = p T and p. = 0.
lfeS 1 ° x

Discussion of Results

Problems of this type fall within the realm of the

calculus of variations and are generally treated using the

method of Lagrange multipliers. Unfortunately this method

has not yielded a closed form solution which expresses the

values of p. for it S in terms of the other network para-

meters and T. However, a number of interesting relations

153

have been shown to hold at the point of optimal system per-

formance.

Before discussing these relations it is worthwhile to

examine the general problem on an intuitive basis. Note

first that if two processors in the functionally equivalent

group have the same speed (i.e., u.=u. for i,j£-S), it is

reasonable to expect that p. should equal p. at the point of

optimal system performance since directing a greater propor-

tion of processing requests to one of these processors would

tend to overload it while underloading the other. This in-

tuitive judgment has been substantiated analytically.

On the other hand there is a seemingly obvious general-

ization of this line of reasoning which is not valid. Suppose

that processor i is t times faster than processor J (i.e.,

u.=tu, for i, jtS with t>l). It might then seem optimal to

channel t times as many processing requests to processor i

as to processor j (i.e., to set p,=tp.). This would have the

effect of equalizing p,/u. and p./u., which would then imply

that A. = A. by the Conservation Law and Q. = Q by equation

5-10. While these conditions may seem compatible with opti-

mal performance, it can be shown that system performance is

never optimized when p*=tp.; instead, it is preferable to

have p. >tp,. That is, faster processors should receive

more than their proportional share of processing requests.

It then follows that faster processors should be more highly

utilized and should have longer expected queues; it Is also

154

true that performance Is optimized when faster processors

are creating system bottlenecks in the sense of the previous

chapter.

Table 6-3 illustrates these remarks with specific

numerical examples. The table deals with a central server

network containing four peripheral processors, two of which

are assumed to be functionally equivalent. That is, L=^

and S = i;3,^J. In addition T=2, p =p1=p2=.2, u.=u2=l and

u =5- With these parameters held fixed, the speeds of the

functionally equivalent processors (i.e., u_ and u^) were

varied subject to the constraint that u_+u^=2. For each

value of U-VUK the optimal values of p., and p^ were obtained

by a numerical search. Each time an optimal point was

located, a record was made of the following three system

characteristics: p3/p4 , Q /Q^ and f^ AQuopo/ |- AQuopo .

This entire procedure was carried out for four different

values of N as Indicated in the table.

The table illustrates that the optimal value of Po/pj,

is always greater than the corresponding value of U./UL as

long as U„/UK>1. However, this effect is more noticeable

for large values of u„/u^ and for small values of N. That

is, as the difference in the speeds of the functionally

equivalent processors increases or the degree of multipro-

gramming decreases, it becomes even more important to channel

a greater number of requests to the faster processor. The

ratio of expected queue lengths and the extent to which the

155

0
p. o rH CM <*> it VT\ \o vo r-

o CM
2 r-4 rH rH rH rH rH rH rH r-t rH

o
<JJ

it

/o|(^>
O eg it u^ IS O rH CN \o

00

v^ rH rH rH rH rH rH CM CM CM

o
Pk o d" CO eg CO e- ON o co

o vn
p rH rH rH eg eg r> it C^ CM

o rH

<
rv

*>|£ o xr> tM rH IN- CM C^-
it • i • • • • •

rH rH Cvl m d- CO it
CM

o r> cv o J- t*. O it Cv.
CM
rH TH I-H H eg eg CM 0. CN c-\

o I/N ON J* o\ ^A rH co w\
CO

J» T-l i-i rH eg eg m it -t vn
at
\

rv
Of

vr\
o t>- »n VO CO vO ^t VO CO

rH rH CM c-> it VO O it vo
r-f CM

o C\ O CO CO VO VA
-d-

i-l T-t 0~\ -"t r- it \0
rH it

o CN- ^ m CVJ CM CM -it c^-
CM
rH rH rH CM r^ it «o vG C"- CO

o CO IN- CO rH IN it UN o
oo

j- rH T-i CM cn UN \o OO o rv
P* rH rH
\

en
Pi

vn
o o k/> so -d- CO CO ON O

rH CM r~\ vo, CO eg
rH

ON
rH

CM it
c"\ \o

^
O m P> p- rH CO Ox

rH CM it IN it CO CO
rH CM ON

z,

3 o m o u^ o v\ o vn o
\

c*> rH T-t eg eg o e*> it ^ »n
3

I
MJ

0)

(V
o

o
<rH

U

&
•H
•P
P,
o

o
CO
p
C

•rH
o

OH

P
03

w
o

•H
+->
V)

•H
u
<D
-P
O
cd

£j
s: o
e
-p
CO

>>
co

156

faster processor is creating a bottleneck are also seen to

be positively correlated with the difference in the speeds

of the two processors and negatively correlated with the

degree of multiprogramming.

These observations can be explained on an intuitive

basis by noting that it is preferable to channel processing

requests to the faster PPU as long as the expected waiting

time plus processing time for the faster PPU is less than

the expected waiting time plus processing time for the slower

PPU. As the degree of multiprogramming decreases, the ex-

pected waiting time for all processors in the system decreases,

and hence it becomes possible to channel more and more pro-

cessing requests to the faster PPU before the build up in

waiting time overtakes the processing speed advantage. To

further illustrate this point, note that in the limiting

case where the degree of multiprogramming is equal to one,

the faster PPU should receive all the processing requests

since there is never any queue wait. This analysis does

not take into account limits in storage capacity or other

factors which might make it necessary to channel at least

some requests to the slower PPU in this case.

Increasing the speed differential between the faster

PPU and the slower PPU reduces the expected waiting and pro-

cessing time for the former while increasing the expected

waiting and processing time for the latter. Thus, to main-

tain optimal performance in this case, it is necessary to

157

Increase the expected queue length at the faster PPL) by

channeling still more processing requests to it. Hence, on

Intuitive grounds it can be seen that the optimal proportion

of processing request channeled to the faster PPli increases

when either the degree of multiprogramming decreases or the

speed differential between the PPU's increases.

Mathematical Analysis

Two useful conditions will be shown to hold at the point

of optimal system performance. The first is that

J- k
p IZ VPIW
 for all 1,J«S. 6-2

Pi JS- , k

The coefficients c, in equation 6-2 are defined as follows:

c „ G(N-k) G(li-l-k) f k=1 2 N-1 ck G(N) G(N-l) lor K ^ X

and cN = 1/G(N)

Equation 6-2 implies that P«/p* = u./u* at the point of

optimal performance if and only if u. = u.. To see this,

note that Pj/p. = ^/u. implies P^u /T^ = Pjuc/Ui • whlch ln

turn implies that the right hand side of equation 6-2 is

equal to one. Thus, if Pj/p, = Uj/u . and uj. " ui • tnen

equation 6-2 will be satisfied and the system will be opti-

mized. Conversely, if p^p , = ^/u. and the system is opti-

mized (i.e., equation 6-2 is satisfied), then the left hand

side of 6-2 must be equal to one. This then implies u^ = u.,

158

The second condition of interest which holds at the

point of optimal performance is that

A IT
-
 A u p A, °u, o 0*0
1 6-3

AJ f- A u p 0 dVL . O OO

In addition to simplifying the computations for the last set

of columns in Table 6-3, this equation also demonstrates

that bottlenecks must exist at the point of optimal perfor-

mance if u ^ u, since A./A. is equal to one if and only if

p./p. = u./u. by the Conservation Law, and this equality will

exist at the point of optimal cerformance if and only if

u. = u. as demonstrated in the previous paragraph. Thus, if

u. ^ u, there must be a bottleneck at the point of optimal

performance.

Equations 6-2 and 6-3 can be formally derived from the

optimization conditions for equation 6-1 by the method of

Lagrange multipliers. Before applying this technique it Is

useful to make a few elementary observations. First note

that p cannot be a member of the set £p. 1 16-SJ since the

CPU is not being considered as one of the functionally

equivalent processors. Hence the factor up is invariant

with respect to jp, [ifiS} and may be disregarded during the

optimization procedure.

Next note that A = G(N-1)/G(N) where G(N) is defined o

in equation 5-3 . Thus the original problem is equivalent

to the problem of maximizing G(N-1)/G(K) with respect to

159

[p, li^sj subject to the constraints that ^> p. = p T and
i^-S

p, - 0. Applying the method of Lagrange multipliers, this

is then equivalent to maximizing

G(N-1)/G(N) + ex P5~ p - p TI
^-ieS ° J

6-4

with respect to j_p. I i*S) subject only to the constraint that

p, ^ 0 for all ieS.

The next step is to set all the partial derivatles of

6-4 equal to zero. For any i^S,

dp, G(N-1)/G(K) + * \y~ y, - pT~|
LieS J

dP.
G(N-1)/G(N) + ex

Now dP1
>,> TT (P.^/U/3

j=l J

=2 n^p^/u^-i-^u^u^TTCp^/uj)^

<x, which is known as a Lagrange multiplier, is treated as a
constant during the optimization process. After the optimal
values of {pJi&SJ are obtained (as functions of «*),
the value of <x is selected so that the constraint > p.=p T
is satisfied. i€S °

160

*s niTT (pJV
u

>3)
nJ

J=l J

= G(N)'Q1(N)/pi

This last step follows from the definition of Q. given

in equation 5-H• In this discussion the dependency of Q,

on N is being explicitly represented since expressions of

the form Q.(N-l) will also be needed.

Continuing with the analysis,

d G(N-l) G(N) G(N~1) Qi(N-D/P1 - G(N-l) G(N) Q1(N)/p1

Hence the partial derivative of 6-4 with respect to p. is

G(N-
G ̂ li.[Ql(N-l) -Ql(N)] + «

Setting this derivative equal to zero yields

«.Sgfc JjJlX^Ol) .,,(•-!)]

Since all the partial derivatives are equal to zero at the

point of optimal performance, the following relationship

must hold for any l,j*-S at this point:

161

s^i x [S(K, - v,-i>] - a^i x [,jW, . VN_U]

Equivalently,

Pi Q1(N) - Q^N-1)

Pj Qj(N) - Qj(N-l)

By equation 5-10,

M

«!<»> -£<PlW*W
Thus

N-l
Q,(N) - Q.(N-l) =
11 k

^_ (p1uo/u1) [_ G(N) " G(N-1) J

N + (p1Uo/u1)
1VG(N)

Setting cN = 1/G(N)

and c m G(N-k) _ G(N-l-k)
k G(N) G(N-l) lor K-i,^ N-i

yields

k

°k(PiVui)

P« N k

z: ^(PJ^/UJ)

This completes the derivation of equation 6-2. To

derive equation 6-3, note that

*- - _ J_G(N-1) G(N) h^'^ - G(N-1)^G(N)
du1

Ao " dUj_ G(N)
G(N)2

162

Now r— G(N) clu. au,
,n

J=l
PjUo/Uj) J

J=l J

n1(piuo/Ul)
ni-1(-piuo/u1)Tr(pjuo/uJ)"j

^7 2 n

L
i TT (PjV

uj)nj

= -G(N)-Q1(N)/u1

Thus 5J7 A„ ou* o

-G(N)-G(N-l)-Q1(N-l)/u1 + G(N-l)-G(N)-Q1(N)/u1

G(N)2

=^[Ql(N) -Qi(N-l)]

This in turn implies

u,
Ql(H) -Ql(N-l) -^^A0

163

Substituting in equation 6-5t

Pi AQ ^A

Therefore

AQ ,u.Ao

a .
d\i1 o

Vopi/u] But A°Pl/Ui "o^o^l7/!
v/uj" vvT^

A.
 i_
A,

by the Conservation Law.

Thus

-S- A ^ du1
Ao

at the point of optimal performance.

Equation 6-3 then follows immediately.

164

PAGE TRAFFIC BALANCING

Problem Definition

Multiprogramming systems which make use of paging pro-

vide another area of application for the central server

model. An important feature of such systems is that, at any

given time, some of a program's pages will reside in main mem-

ory while others reside in auxiliary memory. When a program

references a page which is not in main memory, that page

must be transferred in from auxiliary memory. In order to

make room for this page it is sometimes necessary to first

transfer a page out of main memory. These page transfers

are handled by a PPU which will be called the page transfer

processor.

An interesting aspect of paged systems is that it is

possible to vary the number of page transfers per program by

varying the total number of pages that a program is permitted

to maintain in main memory at any time. That is, in systems

where only a small number of pages from each program are

maintained in main memory, references to pages not in main

memory will be fairly frequent, and so the total number of

page transfers per program will be high. On the other hand,

in systems where a large number of pages from each program

are maintained in main memory, references to pages not in

main memory will be relatively infrequent once the Initial

set of pages is loaded, and so the total number of page

165

transfers per program will be fairly low. Thus it would

appear advantageous to maintain a large number of pages

from each program in main memory.

However, with the size of main memory fixed, systems

which maintain a small number of pages from each program in

main memory will have a large number of programs in main

memory at any time, which is to say a high degree of multi-

programming. This will tend to improve system performance

by enabling other programs to utilize the GPU and various

PPU's while the page transfer channel is carrying out a

transfer for a particular program. Hence there are also

advantages to maintaining a small number of pages from each

program in main memory. This suggests it should be possible

to optimize system performance by specifying the number of

pages which each program may maintain in main memory in a

way that keeps the number of page transfers per program

relatively small while allowing the degree of multiprogram-

ming to be relatively high. This optimization problem,

which will be referred to as page traffic balancing, can be

partially resolved with the aid of the central server model.

Parametric Specification of Page Traffic Behavior

Before approaching this problem it is necessary to have

some way of specifying the relationship between the expected

number of page transfers per program and the average number

of pages each program is permitted to maintain in main memory.

166

Note that the degree of multIprogramming is equal to the

total number of pages of main memory divided by the average

number of pages each program is permitted to maintain in

main memory. Assuming the total number of pages of main

memory is being held fixed, it is thus sufficient to express

the relationship between the expected number of page trans-

fers per program and the degree of multiprogramming of the

system.

Generally speaking, the expected number of page transfers

per program increases as the degree of multiprogramming in-

creases. This increase is comparatively gradual at first,

but then accelerates abruptly after the degree of multipro-

gramming passes a certain critical threshold. This abrupt

acceleration is due to a phenomenon known as thrashing which

was originally analyzed by Denning (30).

Page traffic behavior is also affected by the page re-

placement algorithm. This algorithm determines which page to

remove from main memory at times when it is necessary to make

room for a new page. A good page replacement algorithm will

remove a page which is not likely to be referenced again in

the near future, thus reducing unnecessary page transfers.

It is not the purpose of this discussion to present the

details of various page replacement algorithms or an analysis

of the thrashing phenomenon, but merely to characterize these

factors in a relatively simple manner which preserves their

essential features and also permits systematic variation of

167

key parameters.

Figure 6-2 illustrates such a characterization. The

curves which appear in this figure correspond to instances

of equation 6-6 for which 3=1, T=10 and A=0.5, 1.0 and 2.0

pr-il A
[_T-NJ F(N) = B-|_^J 6-6

Equation 6-6 expresses the expected number of page transfers

per program (i.e., F(N)) as a function of the degree of

multiprogramming (i.e., N) and three parameters: A, B and T.

The parameter T represents the degree of multiprogramming at

which the thrashing phenomenon causes the expected number of

page transfers per program to become virtually infinite.

Since thrashing continues if N is Increased beyond T, it

will be assumed that equation 6-6 defines F(N) only for the

case in which 1=N<T . For N=T F(N) is assumed to be Infinite,

Next note that F(N) = B when N = 1. Hence B is the

expected number of page transfers per program when only one

program is maintained in main memory at any time. Assuming

that main memory is large enough to accomodate entire pro-

grams in this case (i.e., no overlays are necessary), B is

then equal to the expected number of pages referenced per

program. It is assumed in Figure 6-2 that B = 1, but by

simply reinterpreting the scale along the vertical axis it

is possible to represent any other value of B.

The exponent A in equation 6-6 is intended to represent

the relative efficiency of various page replacement algorithms

168

F(N)

12 .

11

10 \

9

8 .

7 •

6

5

I*

3

2

Expected number of page
transfers per program

A=*

->N
3^5678

N = Degree of multiprogramming

Figure 6-2

Page Traffic Behavior

10

169

If N is held constant then F(N) will decrease as A decreases.

This corresponds to the fact that more efficient page replace-

ment algorithms will result in a smaller expected number of

page transfers per program when all other factors are held

fixed.

No particular correspondence between specific values of

A and actual page replacement algorithms is intended, although

the value of A associated with relatively inefficient al-

gorithms such as FIFO will be greater than the value associ-

ated with more efficient algorithms such as LRU. It is

assumed that A is restricted to positive values (i.e., A>0).

Hence the thrashing effect will always cause the expected

number of page transfers per program to go to Infinity as N

approaches T. This corresponds to the fact that thrashing

will occur in any system in which main memory is over-

committed, regardless of the page replacement algorithm used.

However, Figure 6-2 illustrates that inefficient page re-

placement algorithms cause thrashing to become a serious

problem at significantly smaller values of N.

Relation Between Page Traffic Behavior and Network Parameters

Assume that the three parameters in equation 6-6 have

all been specified, and suppose that it is desired to opti-

mize system performance with respect to N. To treat this

problem using the central server model of multiprogramming,

170

st let the page transfer processor correspond to the 1— PPU in

the network. In addition, assume that the following para-

meters have been specified:

r . = total expected number of processing requests directed

to the j— PPU per program (j=2,3 L)

s. = expected amount of processing time for a request

directed to the j— PPU (j=l,2 L)

C = total expected amount of CFU processing time per program

Note that these parameters closely correspond to those

used in the buffer size determination problem, the major

difference being that s. is independent of N In the case of

page traffic balancing since the time to transfer a page to

or from main memory is not assumed to be dependent upon the

degree of multiprogramming of the system. Hence u. = 1/s .

for j=l as well as for j=2,3,...,L .

The other network parameters, which do depend on N, may

be determined as follows. The total expected number of PPU
L

processing requests per program is F(N) + > r, . Thus
j=2 J

L
1/p - 1 = F(M) + ^_ r, by equation 4-4 .

° j=2 J

L
Hence p = l/(1+F(N)+!>" r .)

$2 J

Paralleling the argument presented in the buffer size de-

termination problem,

P/P0 = rj for j=2,3 L

171

so that p^ = rjPo = r j/(1+F(N)+y~ rj

Also Pl^Po = F^N^

L
which implies p.. = P(N)p = F(N)/(l+F(N)+y~" r.)

0 J=2 J

Finally l/(uQpo) = C

Thus u = l/(p C) = (l+F(N)+> r,)/C
° J=2 J

Optimization Equations

Summarizing the results of the previous section, the

page traffic balancing problem is the problem of optimizing

>]J <p.iV*.i>nJ
L *
5~n .&N-1
j=l J

A u p^ = u p o cr o T 0*0

L

j
with respect to N

L J_1

5~n,fcN
.1=1 J

L
where p = l/(l+F(N)+5 r .)

° j=2 J

L
Pl = F(N)/(1+F(N)+2Z rJ 1 j=2 J

L
p, = r,/(l+F(N)+2Z rJ for J=2.3 L j a j_2 J

L
u = (1+F(N)+^Z rJ/C 0 1=2 J

u = 1/s, for j=l,2,3,...,L

172

It Is assumed that N is permitted to vary continuously in the

interval [l,T) and that non-integral values of N are evaluated

by linear interpolation as in the case of buffer size deter-

mination.

Another similarity with the case of buffer size deter-

mination is that many of the dependencies on N cancel each

other out in the expression for A u p . For example, with r o o o

X. again defined as p ,u /u., it follows that for J=2,3t...»L

X, =

L
r./(l+F(N)+y~ r.)

J=2 JJ 3
(1+F(N)+

J=2
r)/C]

1/s

= Tf/C

X1 = P1uQ/u1

[F(N)/(l+F(N)+^~" r.) 3=2 JJ L
(l+F(N)+>_ r,)/C

J=2 J
:]

1/s.

= F(N)Sl/C

Finally,

up =
0*0

(l+F(N)+5~ r,)/C
j=2 J

1/(1+F(N)+^ r .)
J=2 3

l/c

173

Since uQpo is independent of N, this factor can be omitted

from the original optimization problem so that the problem

becomes one of optimizing A - rather than A u p - with e ° o o 0*0
respect to M.

Thus the page traffic balancing problem is the problem

of optimizing

L
5~ "TTOC^J
^- J=l J

L
SZn>N-l
3=1 J

n.6N
j=l J

with respect to N

where X± = F(N)s1/C

X, = r.s./C for j=2,3,...,L

F<N> =B-[f^]A

and non-integral values of N are evaluated

by linear interpolation

Analysis

Assuming that the program population and the size of

main memory are held constant, the two most obvious ways

174

to improve the performance of a paged computer system are to

improve the page replacement algorithm (i.e., decrease A)

or to increase the speed of the page transfer processor

(i.e., decrease s1). In order to determine the relationship

between these two factors, u1 (u..=l/s.,) was allowed to vary

from 0.1 to 4.0 while A was set to either 0.5, 1-0 or 2.0 .

For each value of u. and A the optimal value of N was ob-

tained by a numerical search procedure and the associated

value of A was computed. The other parameters In the

model were: B=1000, T=10; r,=1000, s.=l, C=1000; L=4.

The outcome of this optimization procedure is presented

in Figure 6-3 • As anticipated, optimal performance is im-

proved both by decreasing A and by Increasing u1. It is in-

teresting to note that decreasing A from 2.0 to 0.5 improves

performance from .137 to .167 (i.e., by 29,^) when u1 = 0.2 ,

while the same change in A improves performance from .490

to .659 (i.e., by 34$) when u., = 2.0 . Thus the benefits

of using a better page replacement algorithm may be more

significant for fast page transfer processors than for slow

page transfer processors. This illustrates the point that

choice of page replacement algorithm may be more - rather

than less - critical as the speed of the page transfer pro-

cessor increases.

This section illustrates one way in which central server

models can be used to analyze the problem of page traffic

balancing. There is obviously much additional work to be

175

A = Relative performance

6 .

.5

.4

• 3.

.2

.1

u.
1 2 3 4

Uj^ = Speed of page transfer processor

Figure 6-3

Effect of Page Replacement Algorithm and Speed of Page

Transfer Processor on Relative Performance

176

done in this area, particularly in determining the nature of

the function F(N). Note that F(N) could be determined em-

pirically for different page replacement algorithms by direct

measurement of actual systems. These empirical results could

then be combined with the optimization equations of this

section to explore the behavior of paged systems in consider-

ably greater depth.

177

CHAPTER 7: EXTENSIONS

INTRODUCTION

The central server model of Figure 4-3 incorporates a

set of general features which are common to virtually all

large scale multiprogramming systems. However, when con-

structing models of particular systems It is sometimes desir-

able to extend the model by adding certain special features

such as multiple CPU's, interactive time-sharing terminals

and sector scheduled drums. It may also be desirable to

examine the consequences of random fluctuations in the degree

of multiprogramming (i.e., the value of N). This chapter

discusses a number of relatively simple extensions which can

be made to the basic central server model in order to incor-

porate features of this type.

Some of the extensions presented in this chapter are

rather obvious, given the basic model of Figure 4-3 and the

solution techniques developed by Jackson (48) and Gordon and

Newell (41). The reason for Including these extensions

along with the others is to provide a compact point of refer-

ence for future work in this area. In addition the entire

set of extensions serves to illustrate the generality and

flexibility of the original central server model.

178

NEW PROCESSOR TYPES

Multiple Processors and Channels

In the diagram of Figure 4-3 each service facility

(I.e., circle) Is understood to represent an Individual pro-

cessor or server. Suppose Instead that, for J«0,l,2,...,L ,

the J— service facility represents a set of ra. Identical

servers which can operate In parallel. For example, there

may be a number of CPU's at the central service facility or

a number of data channels associated with a set of disk

drives at one of the peripheral service facilities. Thus

each m. Is a positive integer which may In some cases be

equal to one.

To obtain the steady state distribution for such a net-

work assume first that the time required to complete a ser-

vice request at one of the servers In the J— service facil-

ity Is an exponentially distributed random variable with

mean 1/u.. It then follows Immediately from equation B-15

of Appendix B that the steady state distribution Is given as

1 1 TT (pjVuJ)nj
p(rvni nL> • GTNT on ., ijnj— 7'1

o o J«l J J

kl If k* m.

A.(k) = * 7-2

m.t(m.)k"mJ If k>m.

179

Equation 7-1 represents an entirely straightforward

application of the solution techniques developed by Jackson

and Gordon and Newell. Computational algorithms for evalu-

ating equation 7-1 appear in the second half of Chapter 5«

Dedicated Peripheral Processors

Dedicated peripheral processors correspond to devices

such as the interactive terminals of a time-sharing system.

As in the case of multiple processors and channels, it is

assumed that all the dedicated peripheral processors of a

particular type have identical service time distributions

and can operate in parallel with one another. However, it

is assumed that there is a dedicated processor of each type

for each program in the system. Thus there are never any

queueing delays associated with service requests for dedicated

peripheral processors.

Prom a mathematical standpoint a set of dedicated

peripheral processors corresponds to a service facility con-

taining a sufficiently large number of parallel servers to

guarantee that no service request ever has to wait in a

queue. Por a closed network of N circulating customers,

N parallel servers will obviously suffice. Hence the assump-

tion that the 1— service facility in a central server net-

work corresponds to a set of dedicated peripheral servers

Is equivalent to the assumption that the steady state distri-

bution of the network is given by equation 7-1 and that

180

m. = N in equation 7-2. Note that m,» N implies

A^k) - k! for all k 7-3

It is convenient to use equation 7-3 to characterize dedi-

cated peripheral processors since this equation contains no

explicit reference to the value of m. .

Even though dedicated peripheral processors and multiple

processors and channels can be treated by the same mathe-

matical techniques, they are not conceptually identical.

This follows from the observation that multiple processors

and channels are regarded as functionally equivalent, which

is to say that each one can service a processing request

from any program In the system. On the other hand, each

dedicated peripheral processor is restricted to serving the

processing requests of a particular program. The two con-

cepts are mathematically equivalent because it makes no

difference which processor is serving which request as long

as all requests can be served in parallel.

Queue Dependent Processors

The discussion of rotating storage service disciplines

presented in Chapter 2 indicates that it is possible to im-

prove the performance of devices such as disks and drums by

employing scheduling algorithms such as SATF (i.e., shortest

access time first) and SSTF (i.e., shortest seek time first).

Under these scheduling algorithms the expected service time

181

per processing request becomes a function of the number of

requests waiting for service at the facility. In other

words, service times become queue dependent.

Suppose that the 1— service facility In a central

server network consists of a queue dependent processor whose

service time Is an exponentially distributed random variable

with mean l/(u.'a.(n.)) where n. Is the number of programs

at the facility and a.(n.) Is an arbitrary positive valued

function. It then follows from equation B-15 that the steady

state distribution for this network Is given by equation 7-1

with A.(k) defined as follows:

If k = 0

Ai(k) =) 7-4

' a.(n) if k yO
n=l 1

Smith (77) presents an analysis technique which can be

used to determine the function a.(k) for the case In which

the 1— service facility Is a drum employing an SATF sched-

uling algorithm. The references In the section of Chapter 2

dealing with rotating storage service disciplines are also

relevant to this problem.

182

Non-Exponential Dedicated Peripheral Processors

Suppose that the J— service facility In a central

server network consists of a set of dedicated peripheral

processors whose service time density function Is

h-uj^e""1^.!* + (l-h)-u, 2*'**^ 7-5

Expression 7-5 represents a hyperexponentlal density func-

tion of the second degree. It Is assumed that 0 <h <1

mA UJ.l * UJ.2'

Expression 7-5 Implies that the amount of service time

per processing request for the J— service facility Is distri-

buted as u. 1e~
uJ,l with probability h and distributed as

u. 2e~
uJ,2 with probability 1-h. Suppose that p. Is the

probability that a program will generate a processing request

for the J— service facility after completing a CPU process-

lng request. The J— service facility may then be concep-

tually divided Into a pair of service facilities as Illus-

trated in Figure 7-1.

Partitioning the ;p— service facility in this way

creates a new central server network with exponential service

times at all points and a state description vector of the

form (n .n.,... ,n, .,n . j»n. 2»n <+i »• • • »nL^ * Tlle steady

•The material presented in this section was suggested by
C.G. Moore and S. Klmbleton of the University of Michigan.
Some of this material appears In Moore's Ph.D. thesis (62).

183

NEW PROGRAM
* *

u

^ facility

PL
uL h—•*

Figure 7-1

Hyperexponentlal Dedicated Peripheral Processors

184

state distribution for this network will have the general

form given in equation 7-1 and can he Immediately written

down in any particular case. Since each state (n ,n.,,...,

n. ltn. 2»«««t
nr) *n tne conceptually modified network maps

into the state (n ,n. n. i+ni 2*''' *nl) ln the °rl6lnal

network, the steady state distribution for the original

network is given by

P(nQ,n^,...,n,,...tn^) = ^> P(n ,n^,...,n. .,n.-n. .t...n.)

7-6

nJ.l=0

Note that the same solution technique can be used for hyper-

exponential distributions of arbitrary degree.

To illustrate another method of constructing non-

exponential service times, suppose that the J— service

facility in a central server network consists of a set of

dedicated peripheral processors whose service times are the

sum of k exponentially distributed random variables with

means l/u. -, l/u. 2» •••• Vu. j. • The J— service facil-

ity can then be conceptually divided into k individual expo-

nential service facilities operating in series as Illustrated

In Figure 7-2. While the network in Figure 7-2 does not

entirely conform to the specifications of the central server

model, its steady state distribution can still be obtained

rather easily using the methods of Appendix B.

Note first that the matrix F of branching probabilities

has the following form:

185

NEW PROGRAM
*

t^

P2

PJL

J^ facility

(UJ.l^

Figure 7-2

Erlang Sum Dedicated Peripheral Processors

186

row J

row J+k-2->

row J+k-l->

>o pl p2

1

0

0

0 0

0 0

0 0

I olumn J

PJ °
0

column j+k-1

0 . . . 0 p
J+l

0 . . . 0 0

0 ... 0 0

0 0 0 .. . 0 0

0 1 0 . . . 0 0

0 0 1 ... 0 0

0 0 0 .. 0 0 0 . . . 1 0

1 0 0 .. 0 0 0 .. . 0 0

0 0 0

. . . 0

.. 0

. . 0

.. 0

.. 0

.. 0

.. oj

187

The equation y s yp then becomes

yo " Poyo + yl + y2 + '•• + yj-l + yJ.k + *j+i + ••' + yL

yl » Plyo

y2 " P2yo

yj-l " Pj-lyc

yJ.l " PJyo

7J.2 = yJ.l

7J.3 = yJ,2

yJ.k " yJ.k-l

>1 " pj+lyo

PLyo

It Is thus clear that the vector

y " (yo'plyo'p2yo pJ-lVpjyo pJyo'pJ+lyo pLyo)

k components

satisfies the equation y a yP for any value of y , and in

particular for yQ = u . The steady state distribution for

the conceptually modified network can then be immediately

188

obtained from equation B-15. The steady state distribution

for the original network is then

^no,nl*"" *,n 1* * *" ,nL^ m /* P(n ,...,n. .,...,n, ir»-''inT)

z
1=1

nJ.i=nJ 7-7

The method used to obtain equations 7-6 and 7-7 can

obviously be extended to include arbitrary parallel and

series combinations of exponential components, although the

solution of the equation y = yP may then no longer be rou-

tine. Unfortunately there appears to be no easy way to ex-

tend this technique to shared (i.e., non-dedicated) service

facilities of the type used in the original central server

model. The problem is that such service facilities create

additional queuelng delays which make it difficult to char-

acterize service times as simple combinations of parallel

and series exponential delays. However it is still possible

to write down the complete set of equilibrium equations and

to attempt to solve them directly for specific cases.

*
Hyperexponentlal Central Processors with Processor Sharing

The notion of processor sharing was discussed at some

length In the section of Chapter 2 dealing with quantum con-

trolled service disciplines. In this section processor

•The material presented in this section was suggested by
F. Baskett of the University of Texas.

189

sharing will simply be regarded as the limit of a round robin

service discipline in which the quantum size has shrunk to

zero. Thus, if there are n programs present at the CPU, each

will receive 1/n of the CPU's processing capacity.

Assume next that the amount of (full capacity) service

time per processing request is a random variable with hyper-

exponential density function of the form

h.u o ^e^o.l* + (l-h)-u 0^e'not2
t

, 1 O , £•

Applying the technique of Figure 7-1, the CPU may then be

conceptually divided into a pair of parallel exponential

service facilities as illustrated in Figure 7-3. However

Figure 7-3 cannot be considered as an exact analog of Figure

7-1 because it is assumed in Figure 7-3 that there is only

a single CPU, and that this CPU is operating under a pro-

cessor sharing service discipline. Thus the assumption of

a service facility composed of dedicated processors is not

valid in this case.

Continuing with the analysis, suppose that there are

n 1 programs present at the upper CPU service facility and Of 1

n 9 programs present at the lower CPU service facility.

Each program thus receives l/(n -,+n 0) of the CPU's total

capacity. It then follows that the rate of departure from
n .

the upper facility is -—2^ • UQ 1 and the rate of de-
o,l o,2 *

parture from the lower facility is ^ UQ 2 .
o,l o,2 •

190

i

PROGRAM

D1

-"(S>*

7li

1 \

p~
*"« A

NEW 1

•

•

—, ^\

/

h«p„
\ ' «, ' 3-K 1>

I

h

1

•r
i L (l-h)pQ

h"po St Vi

 9 ^^

""•»
-To 2} ; v n

(l-h)pQ

M

\o^/

NEW PROGRAM 2
L J

Figure 7-3

Hyperexponential CPU with Processor Sharing

191

Note that the processing rate of each service facility

is not solely a function of the number of programs present

at that facility. Thus it is not possible to use the solu-

tion techniques developed by Jackson and by Gordon and Newell

in this case. It is of course still possible to write down

the complete set of equilibrium equations and attempt to

solve them directly. Baskett (8) has successfully carried

out such an analysis for the case in which the only other

component in the network is a set of dedicated exponential
*

peripheral processors. An extension of Baskett*s work to

the full central server model would be of considerable

interest.

•This corresponds to the finite source Poisson arrivel pro-
cess classified as type M_ in Chapter 2.

192

VARIATIONS IN THE DEGREE OF MULTIPROGRAMMING

A Specialized Time-Sharing Model

There are a number of ways In which the central server

model can be extended to Include random fluctuations In the

degree of multiprogramming (i.e., the value of N). One

possible approach Is related to the observation that such

fluctuations are almost always present In systems with Inter-

active time-sharing terminals since programs which are wait-

ing for responses from these terminals are not normally

maintained in main memory. Thus the true level of multi-

programming In such systems is equal to N minus the number

of programs waiting for terminal I/O.

Interactive time-sharing terminals have already been

discussed in this chapter in the section dealing with dedi-

cated peripheral processors. However it is necessary to

extend the central server model still further to explicitly

represent the fact that programs lose and then regain their

main memory allocation as they go into and out of terminal

wait states.

One simple way of representing this phenomenon is to

assume that the system contains a PPU which will be called

an overlay processor. Basically an overlay processor saves

regions of main memory on auxiliary storage and then loads

program and data segments into these regions. It Is assumed

that the overlay processor functions during the normal course

193

of program operation as well as at times when programs

attempt to regain their main memory allocation after a ter-

minal wait. Thus the overlay processor is similar in many

respects to a page replacement processor.

Figure 7-^ represents a system containing an overlay

processor and a set of interactive time-sharing terminals.

Note that programs completing terminal I/O must obtain

service from the overlay processor before proceeding to the

CPU queue. In addition programs make requests for service

from the overlay processor during their normal course of

operation with probability PT_I«

The steady state distribution for the network in Figure

7-4- can be readily obtained using the solution technique

discussed in Appendix B. Note first that the matrix P of

branching probabilities has the following form:

P =

0 Pl p2

10 0

10 0

10 0

0 0 0

PL-1 PL

0 0

0 0

0

1

0

0

The equation y = yP then becomes

194

u

P2

PL-1

^L V

•cz^>

Overlay
Processor

3-©-*1

T

uL) *

Interactive
Terminals

Figure 7-4

Specialized Time-Sharing 'lodel

^

195

yo • yl + y2 + * *' + yL-l

yl • Plyo

y2 " P2yo

yL-l • PL-l
yo + PL

yL e PLyo

Thus the vector y = (yo.Pi7o.P27o (PL+l
+PL)yo'pLyo)

satisfies the equation y_ = y_P for any value of y , and in

particular for y • u . The steady state distribution for

the network can then be immediately obtained from equation

B-15.

Note that Figure 7-4 contains no NEW PROGRAM path.

This is to emphasize the fact that, while the original

central server model is essentially a batch processing model,

the model in Figure 7-4 is more properly regarded as a time-

sharing model. Thus it Is no longer sufficient to use the

number of programs processed per unit time as the sole

measure of system performance. Instead it is necessary to

introduce measures which take response time and total number

of active terminals into account. One possible measure is

the maximum number of active terminals which can be supported

at a given level of responsiveness. However this measure

may not prove satisfactory for all applications, and so

196

additional work may be necessary before the model in Figure

7-4 can be used in conjunction with various optimization

procedures.

An Open Network Model

An entirely different approach to the problem of fluc-

tuations in the degree of multiprogramming Is to assume that

new programs arrive at the system in a random fashion from

an unspecified external source and that programs disappear

entirely from the system after they have completed their

processing requirements.

Figure 7-5 illustrates such a system. It is assumed

that the external arrivals are generated by a Poisson arrival

process with mean rate u
x'aT(N) where a is an arbitrary

non-negative function of N, the total number of programs in

the system at any given time. In addition it is assumed

that the probability that a program will exit from the sys-

tem after completing a CPU processing request is equal to

p . Note that Figure 7-5 can be regarded as a standard

central server network in which the NEW PROGRAM path has

been cut open to permit external arrivals and departures.

Since Figure 7-5 is not a closed network Its steady

state distribution cannot be obtained using the method of

Gordon and Newell. However Jackson's more general solution

technique Is clearly applicable. First note that the matrix

P of branching probabilities has the following form:

197

uI-aI(N)
V

^^^HS^

c=>©-

^

Figure 7-5

Open Network Model

198

p =

0 Pl P2 PL

1 0 0 0

1 0 0 0

Next note that arriving programs all proceed with probability

one to the central server. Thus the vector which character-

izes the branching probabilities for programs arriving from

external sources is

e = (1,0,0 0)

To obtain the steady state distribution for the network

it is necessary to solve the equation y = e + y P for the

vector y. Broken down into individual components, this

equation is

y0 = i + 71 + y2 + . •. + yL

yi • Plyo

y2 • P2yo

yL = Pl/o

Thus the solution vector is

7 = (1/P0. Pi/P0. P2/P0» •••• PL
/po)

199

It is now necessary to define auxiliary functions

similar to those defined in Appendix B.

1 if n - 0

Let Ax(n)

n
" a(k) if n >0

k»i

Assume that the values of A,(n) for 3=0,1,2,... ,L are

defined as in equation B-ll. Finally let

N • n + n- + np + ... + n-

It then follows from the work of Jackson (/j-l , p. 138) that

the steady state distribution for the network in Figure 7-5

is given by

1 N (1/u
0p0)n° TT (pj/ujp0>nJ

where the normalizing constant G is defined as

00

I
N=0

<VN VN) y
(l/uQP?)no f\ (Pj/u3P?)nJ

J-1 A (n) o o "I77r7
J-0

nrN

Since the total amount of main memory Is limited, it

becomes increasingly unlikely that new programs will be

admitted to the system as the number of programs already in

the system grows larger. The values of ax(N) can be specl-

200

fled in a way that reflects this fact. If there exists

some upper bound on N beyond which no programs can be ad-

mitted (i.e., a (N) • 0 for N>M), then the system can

be converted to a closed system with M circulating customers

as indicated in Figure 7-6. The processing rate of the x—

server In Figure 7-6 is assumed to be u a (M-n) where n

is the number of customers present at the x— server and a

is the original external arrival rate function. Note that

the value of M-n in Figure 7-6 corresponds to the value of

N In Figure 7-5-

201

^C=HS>

P2 ^=K^>

*H=K5)-

Figure 7-6

Equivalent Closed Network Model

202

CHAPTER 8: THE •ODEL IN PERSPECTIVE

RELATION TO OTHER WORK

Introduction

The analytic network models discussed In the final

section of Chapter 2 bear very little resemblance to the

central server model presented In this thesis. However

Smith's (76) numerical queuelng network model does fall

within the central server framework. In addition, both

Arden and Boettner (6) and Fenlchel and Grossman (33) have

discussed certain non-queueing theoretic aspects of central

server networks. Thus, despite the almost total lack of

analytic studies of complex queuelng network models, the

general schematic framework of the central server model Is

not entirely without precedent.

In light of these remarks It Is Interesting and some-

what surprising to note that four completely Independent

analyses of the central server model have been published In

the past few months. The first of these Is contained in a

Japanese language article by Tanaka (79) which appeared in

October 1970. Analyses by Arora and Gallo (7) and Buzen

(12) then appeared concurrently during the first week of

April 1971 in conjunction with the SIGOPS Workshop of System

Performance Bvaluatlon. Finally, a Ph.D dissertation deal-

•Thls Workshop was held at Harvard University on April 5-7,
1971. Proceedings may be obtained through the ACM.

203

lng with the central server model was presented by Moore

(62) later in April 1971. It should be noted that ^oore

also discussed his model during the 38 National Operations

Research Society of America Meeting held in October 1970.

However no conference proceedings were published.

The relationship between the work presented in this

thesis and the work of Tanaka. Arora and Gallo, and Moore

will now be examined on an individual basis. Following this

a brief account of the material that is unique to this

thesis alone will be presented.

The Work of C.G. Moore

The original motivation for Moore's model was provided

by the University of Michigan Terminal System (MTS). Sinoe

MTS is primarily a time-sharing system the model includes

dedicated interactive terminals of the type discussed in

Chapter 7.

Moore's derivation of the steady state distribution is

based on the work of Gordon and Newell (4l). After obtain-

ing the steady state distribution Moore uses the results of

a series of MTS measurements to assign numerical values to

model parameters. The model Is then used to make behavior

predictions for MTS. Moore found a reasonable level of

correlation between predicted bahavior and actual behavior,

thus validating the model for this particular case.

204

From the point of view of this dissertation the most

significant aspect of Moore's work Is that It demonstrates

that the assumptions which underlie the central server model

are sufficiently realistic to permit the model to be of

practical value In predicting the performance of actual

multiprogramming systems.

The Work of S.R. Arora and A. Gallo

Arora and Gallo's development of the central server

model grew out of consideration of an airline reservation

system. As a result the peripheral servers In their model

are Identified with levels within a memory hierarchy rather

than more general peripheral processors. After presenting

the model in this somewhat specialized context, Arora and

Gallo proceed to derive the steady state distribution with-

out utilizing the results of Jackson (48) or Gordon and

Newell (^1). They then use the performance predictions of

the model to evaluate alternative system configurations,

using actual cost figures and functional characteristics to

characterize the hardware and using empirically obtained

program behavior statistics to characterize the processing

load.

In a separate section of their paper Arora and Gallo

consider the problem of optimal loading of program and data

segments into the levels of the memory hierarchy under the

assumption that the size of the various program and data

205

segments and the capacity of the levels In the hierarchy are

given as parameters. Since the loading strategy determines

the relative frequency with which the levels in the hierarchy

will be accessed, this problem is related to the peripheral

processor utilization problem analyzed in Chapter 6. How-

ever the objective function that Arora and Gallo attempt to

optimize does not take into account the queueing delays in

the system. Instead it is simply a linear function of the

access times and transfer rates of the non-executable memory

levels plus the cycle times of the executable memory levels.

The specialized form of the objective function reduces the

optimization problem to a problem in linear programming

which is then solved by Vogel's method.

Arora and Gallo*s choice of objective function is some-

what surprising in light of the fact that the overall measure

of performance they use to evaluate alternative system con-

figurations does indeed take queueing delays into account.

Thus in the extreme case where the fastest level of non-

executable memory has virtually unlimited capacity, Arora

and Gallo's optimal loading strategy will place all non-

direotly executable program and data segments into that level

even though this will almost certainly result in excessive

queueing delays and a sub-optimal level of performance

(assuming that the level of performance Is determined by

the measure developed in the other part of the paper). This

difficulty is avoided in the analysis of Chapter 6 since

206

there the objective function and the measure of system per-

formance are one in the same.

The Work of H. Tanaka

Tanaka's model is similar to Moore's in that it is

oriented towards time-sharing systems. Hence this model

also includes dedicated interactive terminals of the type

discussed in Chapter ?. The major goal of this paper is

the derivation of the steady state distribution and related

expressions such as queueing delays and overall response

time. No attempt is made to apply the model to theoretical

problems of the type presented in Chapter 6 or to validate

the model by consideration of empirical data.

Tanaka's derivation of the steady state distribution

for central server networks having an arbitrary number of

parallel servers at each service facility was carried out

from first principles without utilizing the results of

Jackson or Gordon and Newell. This represents a significant

accomplishment even though it is possible to derive this

distribution in a simpler manner by making use of these

related results.

New Material

This thesis treats a number of topics which were not

considered by the previous authors. For example the Con-

servation laws (I.e., equations 5-6 and 5-8) and the fact

207

that the the most highly saturated server has the longest

expected queue (which follows from equation 5-10) represent

new results. In addition the three theoretical problems

treated in Chapter 6 have not been analyzed elsewhere,

although Arora and Gallo have considered the problem of

optimal peripheral processor utilization in a different

context.

Certain technical points such as the use of the NEW

PROGRAM path to represent program terminations are also

new. Finally, the computational algorithms presented in

the second half of Chapter 5 are new and should be of con-

siderable value in the analysis of any queueing network

model whose steady state distribution can be derived using

the methods of Jackson and Gordon and Newell. The signi-

ficance of these algorithms thus extends well beyond the

scope of the central server model itself.

208

SUGGESTIONS FOR FURTHER RESEARCH

A number of the earlier chapters of this thesis contain

explicit references to promising areas for future research.

For example, several problems associated with quantum con-

trolled service disciplines are discussed on pages 3^ - 36

of Chapter 2, the problem of limited queue size with Induced

blocking is mentioned on page 75 of Chapter 3. and the need

for additional research on the problem of page traffic

balancing is cited on page 177 of Chapter 6. In addition,

the extensions to the basic model discussed In Chapter 7 can

be used to construct a host of models which closely resemble

particular systems of interest.

With regard to this last point it should be noted that

the construction of models of particular systems or classes

of systems does not in and of itself constitute a research

activity. For example, the construction of a mathematical

model for the purpose of predicting the behavior of an actual

or proposed system generally falls under the heading of

engineering. This is especially true if the mathematical

techniques used to construct the model are highly standardized

and if the performance predictions are being used to guide

system design. Since the purpose of this section Is to dis-

cuss prospective research problems, such engineering activi-

ties will not be considered further.

209

Research activities are primarily concerned with inves-

tigating the underlying factors which influence the behavior

of all systems of a given type. A number of interesting

research problems can be formulated within the framework of

the central server model. One, which in some ways resembles

the buffer size determination problem of Chapter 6, will be

called the program organization problem. The problem is

simple to state. Assume that the total net amount of pro-

cessing time per program is specified for each processor in

a system. Then, taking overhead and the effects of buffer

size on degree of multiprogramming into account, determine

how this total processing load should be organized in order

to optimize system performance. In other words, specify the

values of the model parameters (u ,...,uT,p ,...,pr and N)
O Li O Li

which optimize overall performance, subject to the constraint

that the net amount of processing time per program for each

processor is constant. The solution to this problem may

provide valuable insight into the relationship between pro-

gram organization and system architecture under a variety of

processing loads.

A somewhat different problem has its initial motivation

in real-time system design. Suppose a particular routine is

executed periodically in response to an external interrupt,

and assume that the time constraints associated with the

interrupt are sufficiently lax so that the routine can be

maintained in secondary storage if desired. Then, given the

210

average time between interrupts, the size of the routine,

the time required to access it from secondary storage, and

the utilization factor for the secondary storage access

channel, specify the conditions under which it is preferable

for the routine to reside in main memory and the conditions

under which it is preferable for the routine to reside in

secondary storage. This problem, which will be called the

residency problem, has Implications for the management of

monitor segments and utility routines in conventional multi-

programming systems in addition to its original application

to real-time system design.

Still another problem is that of optimizing system per-

formance by altering the external processing load (i.e., the

Job mix) in various ways. For example, It is possible to

alter the external processing load by changing the relative

percentages of compute bound and I/O bound Jobs, or by adding

a real-time Job stream with certain processing characteristics,

Since such modifications can affect the average amount of

processing per program, it may no longer be possible to com-

pare systems on the basis of number of programs processed

per unit time. Consequently, solutions to problems of this

type may require the development of new measures of system

performance.

On a more theoretical level, the effects of different

processing time distributions, and especially the effect of

changes in the variance of these distributions, should prove

211

interesting to explore. The work of Baskett (8) which Is

discussed on page 192 of Chapter 7 appears to be a promising

start In this direction.

In short, the prospects for future research In the area

of queuelng network models In general and the central server

model In particular appear quite promising. It thus seems

likely that the central server model and Its variants will

become the objects of extensive examination in the coming

years.

212

APPENDIX A: THE EXPONENTIAL DISTRIBUTION

From a mathematical standpoint, an exponentially dis-

tributed random variable is one whose probability density

-at * function is ae for some a>0. Given this definition

it is possible to derive a number of formal properties which

exponentially distributed random variables satisfy. However,

to gain real insight into the nature of this distribution

it is often more helpful to regard it as the limiting case

of an intuitively simpler discrete time process.

It is useful to have a specific example in mind when

considering the exponential distribution in this light.

Suppose then that in a queueing system each customer pre-

sents the server with the following request: namely, to toss

a particular coin once every s seconds until a "head"

appears. As soon as the first "head" is reached, the re-

quest Is considered satisfied and the customer departs.

Suppose the the coin is unbalanced so that the proba-

bility of getting a "head" on any particular toss is h

(0<h <1). Then the probability that the server will re-

quire s seconds (i.e., one toss) to complete a customer's

request is equal to h, the probability that the server will

require exactly 2s seconds (i.e., two tosses) to complete

a customer's request is equal to (l-h)h, and in general the

•Equivalently, an exponentially distributed random variable
jumulatlve pro
>r some a>0.

may be defined as a random variable whose cumulative proba-
bility distribution function is l-e"a fo]

213

probability that the server will require exactly ns seconds

to complete a customer's request is equal to (l-h)n h.

Note that these formulas are based on the assumption that

the outcome of any particular coin toss is independent of

all other coin tosses. That is, each toss is an independent

Bernoulli trial with probability of success equal to h.

This assumption of independence has a number of inter-

esting consequences. First of all, it implies that regard-

less of the amount of service a customer has already received,

the probability that his service request will be completed

on the next coin toss is always equal to h. More generally,

If a customer receiving service is observed at an arbitrary

point in time, the probability that his service request will

be completed on the n— coin toss after that point in time

is equal to (1-h) " h. This is true regardless of the amount

of service the customer had already received before he was

observed. Thus, the amount of service a customer has already

received in no way affects the probabilities governing the

the additional service he can expect to receive. Probability

distributions satisfying this condition are known as memory-

less distributions. The particular memoryless distribution

cited in this example is known as the geometric distribution.

When service times are geometrically distributed, a

customer's service time is always some integral multiple of

s, the basic coin tossing interval. However, in most situ-

ations of interest service times range over the entire

214

continuum of positive values. It would thus be useful to

define a service time distribution which ranges over this

continuum and which also satisfies the memoryless property.

One way such a distribution might be constructed is by

starting with the original example and then letting s, the

interval between tosses, approach zero. This operation

introduces certain complications since the expected number

of coin tosses required to complete a customer's service is

> n(l-h) h = 1/h , and so the expected amount of time
n=l
required to complete a customer's service request is s/h

seconds. Thus, if s is allowed to approach zero, the ex-

pected amount of time required to complete a customer's

service will also approach zero, and in the limit each

customer is served in zero time.

This difficulty may be avoided if h is also required

to approach zero as s does. In particular, if the ratio s/h

is held constant as s approaches zero, the expected amount

of time to serve a customer will remain constant even though

service times will. In the limit, range over the entire

continuum of positive real values. This limiting process

may be envisaged as one in which coin tosses become more

and more frequent while the probability of getting a "head"

on any particular toss becomes progressively less likely.

To complete this discussion it is necessary to deter-

mine the distribution of service times in this limiting

case. Suppose that the ratio s/h is kept equal to 1/a for

215

some value of a>0. Now, for any value of t, the probability

that a customer will require more than t seconds to complete

his service request Is equal to the probability that he will

require at least t/s tosses. If |£/s] is defined as the

largest Integer less than or equal to t/s, then this proba-

bility can be expressed as:

£1 (l-h)11"^ = (l-h)^i
n=|/i+l m (1_as)£/l slnce s/h m 1/a ,

Thus, in the limit, the probability that a customer will re-

quire more than t seconds of service is:

lim (1-as)^ = lim (l-as)t/s *
s-»o s*o

t
pirn (l-as)1/s~|

= (e-a)*

= e"at

Therefore, the probability that a customer's service time Is

-at less than or equal to t is 1-e , which is to say that ser-

vice times are exponentially distributed.

It is straightforward to verify that if service times

are exponentially distributed, then the amount of service a

•The equality of the two limits derives from the fact that

(i-as)k'^' - (1-as) is bounded by as and hence can

be made arbitrarily small. To see this, note that:

(l-as)^i - (l-as)t/s < (l-as)^i - (l-as)^i+1

= as (1-as)K/2i from the power
series expansions

- as whenever o < s <1/a

216

customer has already received in no way affects the proba-

bilities governing the additional service he can expect to

receive. This fact should also be obvious from the pre-

ceding discussion since, intuitively speaking, at each point

in time the server may be thought of as making a decision as

to whether to eject the customer or to continue serving him

until the next point in time, and the probability that the

server will decide to eject the customer at any particular

point in time is constant. Independent of the amount of

service the customer has already received. The value of

understanding the exponential distribution on this admittedly

vague and intuitive level is that the nature of the memory-

less property, which is so crucial in queuelng theory,

becomes immediately apparent.

As a final point, it Is worth noting that the geometric

distribution is the only discrete distribution to satisfy

the memoryless property and that the exponential distribu-

tion is the only continuous distribution to do so. Feller

(32) demonstrates these facts in Sections XIII.9 (p. 328)

and XVII.6 (p. 458) respectively.

•The probability that a customer will receive an additional
v seconds or less of service, given that he has already re-
ceived u seconds of service, is:
fu+v -at ,. / % \ ae dt „-au -a(u+v) „ „_ . Ju e - e 1 -av rv „ -at .«. _ = . - i_e = \ ae dt

oo -at j j. -au J o foo -at ..
Ju ae dt e

which is the probability that a customer Just beginning ser-
vice will receive a total of v seconds or less of service.

217

APPENDIX B: A SOLUTION TECHNIQUE FOH
MAHKOVIAN QUEUEING NETWORKS

Simple Exponential Servers

The purpose of this Appendix Is to review the solution

techniques used by Jackson (^8) and Gordon and Newell (41)

to obtain steady state distributions for certain classes of

queuelng networks. This first section Illustrates the way

in which steady state distributions can be obtained for net-

works made up of simple exponential servers. The solution

technique is then extended to include queue dependent expo-

nential servers in the second section of the Appendix.

This analysis treats closed queuelng networks only.

That is* it is assumed that a fixed number of customers

circulate through the network at all times with no possi-

bility of customers either entering or leaving. Such net-

works will be characterized as follows:

L+l • the number of servers in the network,

u. » the processing rate of the J— server for J=0,1,...,L

(i.e., the service time at the j— server is an expo-

nentially distributed random variable with mean 1/u.).

3
L

p. . * the probability that a customer leaving the i— server

will proceed to the J— server. Clearly ^_ p, . » 1
J»0 1J

for i»0,l,...,L .

N • the number of customers circulating in the network.

218

Assume that it is desired to obtain

P(n ,n1,...,nT) «» the steady state probability that there
OX Xi

are n. customers present at the J— server,

Note that these probabilities are only de-
L

fined for cases in which

0&n .±N.
J-0

n . = N and

Before determining the steady state probabilities

it is useful to define one auxiliary function. Let

e(nj) =
if n.=0

if n,>0

It is now possible to begin the analysis. Note first

that the rate of transition out of state (n (n1t...(nT) at OX XJ

equilibrium is

Z_e(nj) Uj P(n0.ni nL)

This formula expresses the fact that customers exit from

state (n .n,f...fnT) through the J— server as long as there OX Xi

is at least one customer present at that server. If no

customers are present at the J— server, no transitions are

possible and the factor e(n.) will set the corresponding

terra in the summation equal to zero.

219

Next note that the rate of transition into state

(n ,n-,...,nL) at equilibrium is

L L
> > e(n.) u, p.. P(n .n.,,... ,n. + l,... ,n,-l,... tnT)
i»0 J=0 Jiijoi l j h

This formula expresses the fact that transitions occur into

state (n ,n1t...,nT) from state (n ,n4»..•,n«+lt.... O 1 Li Oil

n^-l,...,^) whenever a customer completes service at the

i— server and then proceeds to the J— server. Since the

1— server operates at rate u. and transitions from the i~

server to the J— server occur with probability !>**• the

rate of transition into state (n ,n1#...,nL) from state

(n,n..,...,n.+l,...,n-l,...,nj.) is equal to

Ui ^U ^no,nl* * * * ,ni+*» * * • ,nl"^» *' * ,nL^ *

This transition rate must be multiplied by e(n.) to

account for the fact that no such transitions can ooour when

n.«0 since state (n .n.,... (n,+lt. •. fn.-lt... ,n.) cannot

exist in this case. Multiplication by e(n.) is necessary

because, even though state (n .n.,...tn-+lt...,n.-l,...,n.)

may not logically exist, a formal value of the function

P(n .Hj,...,n.+lt...tn .-1,....n^) will always exist .

•The funotlon P(nQ,nlt...,nL) is given in equation B-8 .

From a logical standpoint this funotlon is only defined for

220

Next note that when J»i the corresponding term In the

summation Is

e(n.) u. p.. P(n ,n-,... tn. ,... fn.)

This term represents transitions from state (n (nlt...tn-.)

to Itself which occur as a result of customers completing

service at the 1— server and then Immediately returning

to that server. The multiplication by e(n.) accounts for

the fact that such transitions can only occur If there is

at least one customer present at the 1— server.

Since the rate of transition out of any state is equal

to the rate of transition into that state at equilibrium,

the steady state probabilities must all satisfy the follow-

ing equation:

J=0
e(nj \i. P(nQ,nlt... ,nL)

L L
> > e(nj u. Pn P(n »n1,...,n1+l,...,n1-l n.) B-l
1*0 J=0 JX1JOA i j

cases in which 0*n,£N and the n. sum to N. However, to sim-
plify the formal manipulations of this section it is assumed
that this function is defined for all values of n..

221

A separation of variables technique can be used to obtain

values of P(nQ,n1(...tnL) which stalsfy B-l. Assume that

1 L

P(n .n- nL) - ± JT
(xvJ k B"2

k=0

where G Is a constant that will be specified later and the

X^ are functions of the network parameters. To determine

the X, note first that

xl l L n
P(n0,n1,...,n1+1

nj-1»•••»nL^ " X G Tl (Xk'k B~3

Substituting in B-l from B-2 and B-3,

^ «<*j> U
J h j£t (vn*

L L X. , L
5Z ZI •(«,) u Pii x G TT (V k
1.0 J-0 J 1 1J Aj o ka:0 it

1 L

Dividing through by £ (X.) k and moving the results
** k=0 K

to one side.

222

L L
e(n.) u. - > > e(n.) u, p.. (X./X.)

J J 1=0 j=o
J J J

J-0

Hence, > e(n.)
J=0 J

L L
UJ - £j>i PiJ (W • 0 B-4

If all the customers are present at the k— server,

then e(n.) will be equal to one and all the other e(n.)

will be equal to zero. In order to satisfy equation B-^

In this case, It Is thus necessary that

L
k ^ ^ Plk (X^) « 0 B-5 u

1=0

Since It Is possible for all the customers to be present at

any server In the network, equation B-5 must be satisfied

for k=0,l L . In addition, It Is obvious that equation

B-4 will be satisfied for any state (n .n.,...,^) If

equation B-5 is satisfied for k»0,l,...,L . Thus equation

B-5 represents a necessary and sufficient set of conditions

for determining the X..

It Is possible to rewrite equation B-5 in a simpler

form. First define

yk = ukXk for kB°»1»—»L B~6
Equation B-5 then becomes

L
yk - 2Z 7t Plk 1=0

Since this equality must hold for k»0,l,...,L , the vector

y = (y^y^** • .yL) must satisfy the eigenvector equation

223

y « yP B-7

where P is the matrix (p.,) .

Thus, assuming a real and non-negative solution to

equation B-7 can be found, it follows from equations B-6

and B-2 that the steady state distribution of customers in

the network is
1 L n p<Vni nL) • G JT < W k B-8
k«0

Note that no explicit reference has been made thus far

to the number of customers in the network (i.e., N). In

fact the only part of the solution which depends on N is the

constant G. To express this dependency G will be written

as G(N) for the remainder of this discussion.

The constant G(N) is selected so that the sum of all

the P(n ,n,,...,nL) will be equal to one. Since any value
L

of P(n .n..,... ,nT) for whioh > " n, • N represents a
° X X >0 J

possible state of the system, it follows that

G(N) = J> TT" (yk/uk)
nk B-9

k=0 *

The derivation of equations B-8 and B-9 is essentially

a restatement of Gordon and Newell'a argument. However the

network description was slightly simplified by the assumption

that the processing rate of each server is independent of

the number of customers present at that server. The next

224

section demonstrates the way In which the steady state distri-

bution can be obtained when such dependencies are assumed to

be present.

Queue Dependent Servers

The network description Is the same as In the previous

section except that the processing rate of each server Is no

longer a constant but Is Instead a function of the number of

customers present at the server. That Is, If there are k

customers present at the J— server, then the time until the

next service completion is assumed to be an exponentially

distributed random variable with mean —ngfc .
J J

In the previous section it was in effect assumed that

a.(k)»l for J=0,1,...,L and fc-1,2 N . It will now be

assumed that the a. are arbitrary functions subject only to

the constraint that a,(k)>0 for 3*0,1,...,L and k«l,2,...t

N . The equation which corresponds to B-l is then

L
ZZ e(nj) *j<nj) Uj Ptn^ nL)

L L
]JT~~^>~ e(n.) a.(n. + l) u.p. . P(n ,n1,...,n1+l n.-l,...,nL)
1=0 J=0 J11 IIJOJ. x j

L
e(n1) a^n^ u^ p^ P(n0,n^t... tn, ,... ,tu) B-10

1=0

225

A steady state distribution which satisfies equation

B-10 can also be obtained by a separation of variables tech-

nique, but in order to do so it is first necessary to make a

variable transformation. Begin by defining

Aj(0) - 1

n
A.(n) • ' " a.(k) for n-l,2,...,N

Then define

B-ll

Q(rVnl nL) = P(,Vnl nL} JTW

Note that

Q(n ,n1,...tnT)
P(no,n1 nL) * g—± ^ B-12

TT A.(nJ
J«0 J J

Also

P(n ,n-,... .n^+1,... ,n.-l,... ,n»_)

a.(n.)

a^Tn^+I) Q(no'nl ni+1 "j"1'' * * ,nL)

TTAAn J

B-13

226

Substituting In B-10 from B-12 and B-13,

J=0
e(n.) a (n.) u. Qln^nj n^)

J=0 W

L L
> > e(n.) a,(n.) u.p, . Q(n .n.,...,n.+l,
1=0 1=0 J JJ •»• J-J OJ. 1

,nrl. »nT)

JT A.(u)
J=0 J J

B-lif

Multiplying through by ' A.(u.) reduces equation
J=0 J J

B-14 to the same form as equation B-l except that all the

P's are replaced by Q's and e(n.) is replaced everywhere by

einj-a.lnj. It is thus possible to proceed exactly as in

the case of equation B-l and derive

£_ e(nj) ajUj) [^ - glu, PlJ (X./XjjJ

Since a.(N)>0 by hypothesis. It is thus possible to deduce

uk - g ui Pij < W •

227

for k=o,l,...,L by the same argument that was used to deduce

B-5 from B-4. It then follows that

1 L

Q(no'nl nL) - GOT 2J <W k

where y = ^Q*71 7L)

Is the real and non-negative solution of the elgnevector

equation Z = Z'**

Applying equation B-12, It then follows that

L (yk/uk)
nk

P(n°-ni ^-aferTT -^7 B-I5

The normalizing constant G(N) Is clearly determined by the

<T L < W"*
equation G(N) • \ j| jjjfiT) B"16

k=0

tf*-*
Equations B-15 and B-16 represent a minor generalization

of the results obtained by Gordon and Newell. Jackson's

results, on the other hand, are considerably more general and

Include these equations as a special case.

228

BIBLIOGRAPHY

1 Abate, J. and Dubner, H. Optimizing the performance of
a drum-like storage. IEaE Trans, on Comp.. C-18, 11
(Nov. 1969). 992-997.

2 Abate, J., Dubner, H. and Weinberg, S.B. Queueing analy-
sis of the IB1 2314 disk storage facility. JACM, 15. *+'
(Oct. 1968), 577-589.

3 Adiri, I. A time-sharing queue with preemptive-resume
priority discipline. Israel J. of_ Tech.. 6, 5 (Nov.
1968),277-282.

4 Adiri, I. Computer time-sharing queues with priorities.
JACM, 16, 4 (Oct. 1969), 631-6^5.

5 Adiri, I. and Avi-Itzhak, B. A time-sharing queue with
a finite number of customers. JACM, 16, 2 (Apr. 1969)»
313-323.

6 Arden, B. and Boettner, D. Measurement and performance
of a multiprogramming system. ACT Symposium on Operating
Systems Principles. ACM, N.Y., Oct. 1969, 130-146T~

7 Arora, S.R. and Gallo, A. The optimal organization of
multiprograramed multi-level memory. ACM-SIGOPS Workshop
on System Performance Evaluation. ACM, N.Y., Apr. 1971,
104-141.

8 Baskett, F. Mathematical Models of Multlprogrammed
Computer Systems. Ph.D. Thesis, Univ. of Texas, Austin,
Texas, Dec. 1970.

9 Boudreau P.E. and Kac, M. Analysis of a basic queuing
problem arising in computer systems. IBM J. Res, and
Development. 5. 2 (Apr. 1961), 132-140.

10 Bowdon, E.K., Sr. Priority assignment in a network of
computers. Digest IEEE 1969 Comp. Group Conf.. IEEE
Publ. No. 69C-30-C, 6O-60T"

11 Burke, F.J. The output of a queueing system. Oper.
Res.. 4, 6 (Dec. 1956), 699-704.

12 Buzen, J. Analysis of system bottlenecks using a queue-
ing network model. ACM-SIGOPS Workshop on System Per-
formance Evaluation, ACM, N.Y., Apr. 1971, 82-103.

229

13 Chang, W. A queuing model for a simple case of time
sharing. IBM Sjrs. J., 5, 2 (1966), 115-125.

14 Chang, W. Queues with feedback for time-sharing computer
system analysis. Oper. Res.. 16, 3 (June 1968), 613-627.

15 Chang, W. Single server queuing processes in computing
systems. IBM Sys. J., 9, 1 (Jan. 1970), 36-71.

16 Chang W. and Wong, D.J. Analysis of real time multi-
programming. JACM, 12, 4 (Oct. 1965), 581-588.

17 Coffman E.G. Stochastic Models of Multiple and Time-
Shared Computer Operations. Ph.D. Thesis, Dept. of
Engineering, Univ. of Calif., Los Angeles, Cal., June
1966. (Available from National Technical Information
Service, Springfield, Va., as AD 636 976.)

18 Coffman, E.G. Studying multiprogramming through the use
of queueing theory. Datamation. 13t 6 (June 1967). 47-54.

19 Coffman, E.G. An analysis of computer operations under
running time priority disciplines. In Klerer, M. and
Heinfelds, J. (ed). Interactive Systems for Experimental
Applied Mathematics. Academic Press, N.Y., 1968, 257-270.

20 Coffman, E.G. Analysis of two time-sharing algorithms
designed for limited swapping. JACM. 15t 3 (July 1968),
3^1-353.

21 Coffman, E.G. Analysis of a drum input/output queue
under scheduled operation in a paged computer system.
JACM. 16, 1 (Jan. 1969), 73-90.

22 Coffman, E.G. and Kleinrock, L. Feedback queueing models
for time-shared systems. JACM. 15. 4 (Oct. 1968), 549-
576.

23 Coffman, E.G. and Krishnamoorthl, B. Preliminary Analy-
sis of Time-Shared Computer Operation. Doc. SP-1719.
Sys. Dev. Corp., Santa Monica, Cal., 1964.

24 Coffman, E.G. and "«!untz, R.R. Models of pure time-shar-
ing disciplines for resource allocation. Proc. ACM 1969
Nat. Conf.. ACM Publ. No. P-69, 217-228.

25 Coffman, E.G., Muntz, R.R., and Trotter, H. Waiting
tine distributions for processor sharing systems. JACM.
17. 1 (Jan. 1970), 123-130.

230

26 Cox, D.R. and Smith, W.L. Queues. Methuen and Co.,
London, 1961.

27 Delbrouck, L.E.N. A feedback queuelng system with batch
arrivals, bulk service, and queue-dependent service tine.
JAC-:, 17, ? (Apr. 1970), 31^-323.

28 Denning, F.J. Effects of scheduling on file memory
operations. Froc. AFIPS 1967 SJCC. Vol. 30, Thompson
Books, Wash., D.C., 9-21.

29 Denning, P.J. The working set model for program be-
havior. CAOI. 11, 5 Uay 1968), 323-333-

30 Denning, P.J. Thrashing: its causes and prevention.
Proc. AFIPS 1968 FJCC, Vol. 33, Thompson Books, Wash.,
D.C., 915-922.

31 Estrln, G, and Kleinrock, L. Measures, models and -neas-
urements for time-shared computer utilities. Proc. AC±
1967 Nat. Conf., Thompson Books, Wash., D.C., 85-96.

32 Feller, W. An Introduction to Probability Theory and
its Applications, Vol. 1, Third ed., Wiley and Sons,
N.Y., 1968.

33 Fenichel, R.R. and Grossman, A.J. An analytic model of
multlprogrammed computing. Proc. AFIFS 1969 SJCC.
Vol. 3^. AFIPS Press, Montvale, N.J., 717-721.

34 Fife, D.W. An optimization model for time-sharing.
Proc. AFIPS 1966 SJCC. Vol. 30, Thompson Books,
Wash., D.C., 97-lbTT"

35 Fife, D.W. and Rosenberg, R.S. Queuelng in a memory-
shared computer. Proc. ACM 1964 Nat. Conf., Thompson
Books, Wash., D.C., Hl-1 - Hl-13.

36 Fife, D.W. and Smith, J.L. Transmission capacity of
disk storage systems with concurrent arm positioning.
IEEE Trans, on Elect. Comp.. EC-14, k (Aug. 1965),
575-552":

37 Finch, P.D. Cyclic queues with feedback. J. Roy. Stat.
Soc. Ser. B, 21, 1 (1959). 153-157.

38 Finch, P.D. The output process of the queuelng system
i/G/1. J. Roy.. Stat. Soc. Ser. B, 21, 2 (1959), 375-
380.

231

39 Frank, H. Analysis and optimization of disk storage
devices for time-sharing. JACK. 16, 4 (Oct. 1969),
602-620.

40 Gaver, D.P. Probability models for multiprogramming
computer systems. JACM. 14, 3 (July 1967). 423-438.

41 Gordon, W.J. and Newell, G.F. Closed queuing systems
with exponential servers. Oper. Res.. 15. 2 (Apr. 1967),
254-265.

42 Gordon, W.J. and Newell, G.F. Cyclic queuing systems
with restricted queue lengths. Oper. Res.. 15. 2
(Apr. 1967), 266-277.

43 Gordon, W.J. and Newell, G.F. Acknowledgment. Oper.
Res.. 16, 6 (Dec. 1967), 1182.

44 Greenberger, M. The priority problem and computer time-
sharing. Management Science. 12, 11 (July 1966), 888-906

45 Harrison, G. Message buffering in a computer switching
center. IEEE Trans, on Communication and Electronics.
82. (Sept. 1963). 532-53^ '

46 Hunt, G.C. Sequential arrays of waiting lines. Oper.
Res.. 4, 6 (Dec. 1956), 674-683.

47 Jackson, J.R. Networks of waiting lines. Oper. Res..
5. 4 (Aug. 1957). 518-521.

48 Jackson, J.R. Jobshop-llke queueing systems. Manage-
ment Science. 10, 1 (Oct. 1963), 131-142.

49 Jackson, R.R.F. Queueing processes with phase-type
service. J. Roy. Stat. Soc. Ser. B, 18, 1 (1956),
129-132.

50 Kendall, D.G. Stochastic processes occurlng in the
theory of queues and their analysis by the method of
the imbedded Markov chain. Ann. Math. Stat.. 24 (1953).
338-354.

51 Kleinrock, L. Analysis of a time-shared processor.
Naval Res. Logistics Quart.. 11, 1 (Mar. 1964), 59-73.

52 Kleinrock, L. Sequential processing machines (S.P.M.)
analyzed with a queuing theory model. JACM. 13. 2
(Apr. 1966), 179-193.

232

53 ivleinrock, L. Time-shared systems: a theoretical treat-
ment. JACM. 14, 2 (Apr. 1967), 242-261.

54 Kleinrock, L. Certain analytic results for time-
sharing processors. Proc. IFIf 1968 Gong.. Vol. 2,
North-Holland Publ. Co., Amsterdam, 838-845.

55 Kleinrock, L. On swap time in time-shared systems.
Digest IEEE 1969 Comp. Group Conf.. IEEE Publ. No.
69C-30-C, 37^417

56 Kleinrock, L. A continuum of time-sharing scheduling
algorithms. Proc. AFIPS 1<
Press, 'lontvale, N.J., 453-
algorlthms. Proc. AFIPS 1970 SJCC. Vol. 36. AFIPS

1-458.

57 Kleinrock, L. and Coffman, E.G. Distribution of attained
service times in time-shared systems. J. Comp. and Sys.
Sciences. 1, 3 (Oct. 1967). 287-298.

58 Koenigsberg, E. Cyclic queues. Operational Res. Quart..
9. 1 ((1958), 22-35.

59 Krishnaraoorthi, B. The stationary behavior of a time-
sharing system under Poisson assumptions. OPSEARCH-
J. Oper. Res. Soc. of India. 3, 3 (1966), 101-117.

60 Krishnamoorthi, B. and Wood, R.C. Time-shared computer
operations with both lnterarrlval and service times
exponential. JACM. 13, 3 (July 1966), 317-338.

61 McKinney, J.'i. A survey of analytic time-sharing models.
Computing Surveys. 1, 2 (June 1969), 105-116.

62 Moore, C.G. Network Models for Large-Scale Time-Sharing
Systems. Ph.D. Thesis, Univ. of *ich., Ann Arbor, **lch.,
April 1971.

63 O'Brien, G.G. The solution of some queuing problems.
J. Soc. Indust. Applied Math.. 2, 3 (Sept. 1954), 133-142.

64 Patel, N.R. A Mathematical Analysis of Computer Time-
Sharing Systems. Masters Thesis, Dept. of E.E., ''lass.
Inst. of Tech., Cambridge, '•'ass., June 1964.

65 Phlpps, T.E., Jr. Machine repair as a priority waiting-
line problem. Oper. Res.. 4, 1 (Feb. 1956), 76-85.

66 Rasch, P.J. A queuelng theory study of round-robin
scheduling of time-shared computer systems. JACM. 17,
1 (Jan. 1970). 131-145.

233

67 Reich, E. Waiting times when queues are in tandem.
Ann. Math. Stat.. 28, 3 (1957). 768-773-

68 Sakata, M., Noguchi, S. and Oizumi, J. Analysis of a
processor shared queuelng model for timesharing systems.
Froc. of Second Hawaii Int. Conf. on Sys. Science. Univ.
of Hawaii, Honolulu, 19^97 625^o28.

69 Scherr, A.L. An Analysis of Time-Shared Computer Sys-
tems. Fh.D. Thesis, Dept. of £.£., Mass. Inst. of Tech.,
Cambridge, Mass., June 1965. (Available from the MIT
Press, Cambridge, Mass.)

70 Schrage, L.E. The queue M/G/l with feedback to lower
priority queues. Management Science. 13,7 (Mar. 1967),
466-W.

71 Schrage, L.E. Analysis and optimization of a queuelng
model of a real time computer control system. IEEE
Trans, on Comp.. C-18, 11 (Nov. 1969), 997-1003.

72 Schrage, L.E. and Miller, L.W. The queue M/G/l with the
shortest remaining processing time discipline. Oper.
Res.. 14, 4 (Aug. 1966), 670-684.

73 Seaman, P.H., Llnd, R.A. and Wilson, T.L. An analysis
of auxiliary-storage activity. IBM Sys. J., 5, 3
(1966), 158-170.

74 Sharma, R.L. Analysis of a scheme for information
organization and retrieval from a disk file. Proc.
IFIP 1968 Cong.. Vol. 2, North-Holland Publ. Co.,
Amsterdam, 853-859.

75 Shemer, J.E. Some mathematical considerations of time-
sharing scheduling algorithms. JACM, 14, 4 (Apr. 1967)t
262-272.

76 Smith, J.L. An analysis of time-sharing computer systems
using Markov models. Proc. AFIPS 1966 SJCC, Vol. 28,
Thompson Books, Wash., D.C., 87-95»

77 Smith, J.L. Multiprogramming under a page on demand
strategy. CACM. 10, 10 (Oct. 1967), 636-646.

78 Takacs, L. Introduction to the Theory of Queues.
Oxford Univ. Press, N.Y., 19^27

79 Tanaka, H. An analysis of on-line system using parallel
cyclic queues. Denshi Tsushln Gakkal Rombunshl (J. of
the Assoc. of Electronics and Communication of JapanTT

2 34

53-C, 10 (Oct. 1970), 756-764, (Japanese).

80 .Jallace, V.L. and lason, D.L. Degree of multiprogram-
ming in page-on-demand systems. CACM, 12, 6 (June
1969). 305-318.

81 Jallace, V.L. and Rosenberg, R.S. Markovian models and
numerical analysis of computer system behavior. Iroc.
AFIFS 1966 SJCC. Vol. 28, Thompson Books, Wash., D.C.,
141-148".

82 Walter, E.3. and '.Jallace, V.L. Further analysis of a
computing center environment. CACM, 10, 5 (May 1967).
266-272.

83 Weingarten, A. Storage requirements for a message
switching computer. IEEE Trans, on Commualcations

rs., CS-12, 2 (June T96T), 191-195-

84 Weingarten, A. The Eschenbach drum scheme. CACM, 9,
7 (July 1966), 509-512.

85 Weingarten, A. The analytic design of real-time disk
systems. Proc. IFIF 1968 Cong.. Vol. 2, North-Holland
Publ. Co., Amsterdam, 860-866.

235

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

• ZB. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
l ORIGINATING A c Tl vt TY (Corporate author)

Harvard University
Division of Engineering and Applied Physics
Cambridge, Massachusetts 02138

2b. GROUP
N/A

3 REPORT TITLE

QUEUEING NETWORK MODELS OF MULTIPROGRAMMING

«. DESCRIPTIVE NOTES (Type ot report and inclusive dates)

None
5 AUTHORIS) fFirst name, middle initial, last name)

Jeffrey P* Buzen

6 REPOR T DA TE

August 1971

7a. TOTAL NO- OF PAGES 7b. NO OF REFS

85
8a. CONTRACT OR GRANT NO

FI9628-70-C-02I7
9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJEC T NO ESD-TR-71-345

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited*

II. SUPPLEMENTARY NOTES

THESIS
Dlv. of Eng. and Applied Physics
Harvard University

12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hanscom Field, Bedford, Mass. 01730

13. ABSTRAC T

A model Is developed which represents the behavior of multi-
programmed computer systems In terms of a network of Interdependent
queues. This model, which is known as the central server model of
multiprogramming, Is first analyzed mathematically and then applied
to three problems in operating system design. These are: the optimal
choice of buffer size for tape-like devices; the optimal allocation
of processing requests among a set of functionally equivalent
peripheral processors such as disks and drums; the optimal selection
of the degree of multiprogramming in demand paging systems.

A series of computational algorithms are developed to supplement
the analytic work. These algorithms can be used to obtain the
marginal distributions and expected queue lengths for a large class
of queueing network models.

DD FORM
1 NOV 65 1473 UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

KEY wo RDS

Computers
Multiprogramming
Operating System Design
Optimization of Computer Systems
Performance Evaluation
Queueing
Queueing Networks

UNCLASSIFIED
Security Classification

